

IDFS April 21, 2014

INSTRUMENT DESCRIPTION
FILE SYSTEM DEFINITION

(IDFS)

Version 2.1
Document Release R

Department of Space Science
Southwest Research Institute ® (SwRI ®)

6220 Culebra Road
San Antonio, TX 78238-5166

Document Maintained By:
Sandee Jeffers

sjeffers@swri.org

Carrie Gonzalez
cgonzalez@swri.org

IDFS April 21, 2014

IDFS Copyright Notice April 21, 2014

Copyright © 1998 by Southwest Research Institute (SwRI)

All rights reserved under U.S. Copyright Law and International
Conventions.

The development of this Software was supported by contracts NAG5-3148,
NAG5-6855, NAS8-36840, NAG5-2323, and NAG5-7043 issued on behalf of
the United States Government by its National Aeronautics and Space
Administration. Southwest Research Institute grants to the
Government, and others acting on its behalf, a paid-up nonexclusive,
irrevocable, worldwide license to reproduce, prepare derivative works,
and perform publicly and display publicly, by or on behalf of the
Government. Other than those rights granted to the United States
Government, no part of this Software may be reproduced in any form or
by any means, electronic or mechanical, including photocopying,
without permission in writing from Southwest Research Institute. All
inquiries should be addressed to:

Director of Contracts
Southwest Research Institute
P. O. Drawer 28510
San Antonio, Texas 78228-0510

Use of this Software is governed by the terms of the end user license
agreement, if any, which accompanies or is included with the Software
(the "License Agreement"). An end user will be unable to install any
Software that is accompanied by or includes a License Agreement,
unless the end user first agrees to the terms of the License
Agreement. Except as set forth in the applicable License Agreement,
any further copying, reproduction or distribution of this Software is
expressly prohibited. Installation assistance, product support and
maintenance, if any, of the Software is available from SwRI and/or the
Third Party Providers, as the case may be.

Disclaimer of Warranty

SOFTWARE IS WARRANTED, IF AT ALL, IN ACCORDANCE WITH THESE TERMS OF
THE LICENSE AGREEMENT. UNLESS OTHERWISE EXPLICITLY STATED, THIS
SOFTWARE IS PROVIDED "AS IS", IS EXPERIMENTAL, AND IS FOR NON-
COMMERCIAL USE ONLY, AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Limitation of Liability

SwRI SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED AS A RESULT OF
USING, MODIFYING, CONTRIBUTING, COPYING, DISTRIBUTING, OR DOWNLOADING

IDFS Copyright Notice April 21, 2014

THIS SOFTWARE. IN NO EVENT SHALL SwRI BE LIABLE FOR ANY INDIRECT,
PUNITIVE, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGE (INCLUDING LOSS
OF BUSINESS, REVENUE, PROFITS, USE, DATA OR OTHER ECONOMIC ADVANTAGE)
HOWEVER IT ARISES, WHETHER FOR BREACH OF IN TORT, EVEN IF SwRI HAS
BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. YOU HAVE
SOLE RESPONSIBILITY FOR ADEQUATE PROTECTION AND BACKUP OF DATA AND/OR
EQUIPMENT USED IN CONNECTION WITH THE SOFTWARE AND WILL NOT MAKE A
CLAIM AGAINST SwRI FOR LOST DATA, RE-RUN TIME, INACCURATE OUTPUT, WORK
DELAYS OR LOST PROFITS RESULTING FROM THE USE OF THIS SOFTWARE. YOU
AGREE TO HOLD SwRI HARMLESS FROM, AND YOU COVENANT NOT TO SUE SwRI
FOR, ANY CLAIMS BASED ON USING THE SOFTWARE.

Local Laws: Export Control

You acknowledge and agree this Software is subject to the U.S. Export
Administration Laws and Regulations. Diversion of such Software
contrary to U.S. law is prohibited. You agree that none of the
Software, nor any direct product therefrom, is being or will be
acquired for, shipped, transferred, or reexported, directly or
indirectly, to proscribed or embargoed countries or their nationals,
nor be used for nuclear activities, chemical biological weapons, or
missile projects unless authorized by U.S. Government. Proscribed
countries are set forth in the U.S. Export Administration Regulations.
Countries subject to U.S embargo are: Cuba, Iran, Iraq, Libya, North
Korea, Syria, and the Sudan. This list is subject to change without
further notice from SwRI, and you must comply with the list as it
exists in fact. You certify that you are not on the U.S. Department
of Commerce's Denied Persons List or affiliated lists or on the U.S.
Department of Treasury's Specially Designated Nationals List. You
agree to comply strictly with all U.S. export laws and assume sole
responsibilities for obtaining licenses to export or reexport as may
be required.

General

These Terms represent the entire understanding relating to the use of
the Software and prevail over any prior or contemporaneous,
conflicting or additional, communications. SwRI can revise these
Terms at any time without notice by updating this posting.

Trademarks

The SwRI logo is a trademark of SwRI in the United States and other
countries.

IDFS Introduction 1 April 21, 2014

Revision Log

Revision Release Date Changes to Document
Version 2.1
Release G

1/16/03 • Revision Log was added.
• SwRI logo was updated since now Registered.
• Spacecraft Potential definitions were added in Token-

tagged section (section 5.6).
Version 2.1
Release H

3/23/04 • Calibration Data Scope definition was added in Token-
tagged section (5.7).

• Maximum packing size for scalar instruments was
added in Token-tagged section (5.8).

• Updated table in section 6 to add the fields cal_scope,
max_packing and nano_defined.

• Orbiting_body VIDF field has new value definitions.
• Added pot_src_defined token for Section 5.6 to be

consistent with Euler Angle Rotation information
(Section 5.5).

• Updated section 4.5.5 (d_type) to clarify that this
applies only to sensor data, not to any calibration data
which may be defined within the IDFS data file.

Version 2.1
Release I

5/17/05 • Start of Spin IDFS data source definitions were added
in Token-tagged section (section 5.9).

• Clarifications made for crit_act_sz, crit_status,
crit_action, tbl_off, cal_scope, max_nss, and hdr_off
fields.

• Clarifications made for timing issues for Multiple VIDF
files (section 6).

Version 2.1
Release J

6/06/05 • Fixed example provided for cal_scope (section 5.7)

Version 2.1
Release K

1/03/06 • Updated section 5.6 to add replace_value to the list of
tokens for the Spacecraft Potential definition.

• Updated section 4.1.4.6 (tbl_var) to add new value to be
used to specify that the table is a function of spacecraft
potential data.

• Updated section 5.7 to define d_type for calibration
data sets.

Version 2.1
Release L

6/05/06 • Updated section 5.6 to make use of the format field
since constant option is now part of VIDF definition;
also renamed replace_value to constant_value in
section 5.6.

Version 2.1
Release M

12/12/06 • Updated section 4.15.1 for addition of constant id 14
and for clarification of usage of constant ids 12 and 13.

• Updated section 5.9 to match new constant id 14 text.
Version 2.1
Release N

07/16/07 • Updated section 5.5.4. to indicate scalar IDFS source.

IDFS Introduction 2 April 21, 2014

Revision Release Date Changes to Document
Version 2.1
Release O

10/01/09 • Revised section 5.5 (Euler Angle Rotation Information)
since Euler is now one of 2 possible sections described
for coordinate system transformation, with Celestial
Position Information being the newest section related to
coordinate system transformations.

Version 2.1
Release P

12/28/12 • Background definitions were added in Token-tagged
section (section 5.10).

• Updated sections 4.10.12 and 5.5.2.14 to clarify
examples of utilizing constants for the Pitch Angle and
Euler Angle values.

• Updated section 4.1.4.6 (tbl_var) to add new value to be
used to specify that the table is a function of
background data.

Version 2.1
Release Q

03/19/13 • Corrected the second example in section 5.5.3.16

Version 2.1
Release R

04/21/14 • Clarification in section 4.15.1 (const_id) for initial and
final elevation angle constants

IDFS Introduction 1 April 21, 2014

1. Instrument Data File Set (IDFS) Overview

The IDFS is a self-documenting scientific data storage format which is serviced by a set
of access routines referred to as the IDFS data access software. The IDFS paradigm and
corresponding data access routines were developed and are maintained by Southwest Research
Institute (SwRI). The IDFS format was created so that analysis routines could be developed
which would have usage over a wide range of data sets. The IDFS data access software provides
both a low and high level set of routines which allow access to the IDFS data from application
programs. See the IDFS Programmers Manual (http://www.idfs.org/idfs_prog_man.ps) for
more information and details concerning the IDFS data access routines. A complete IDFS
implementation consists of five files:

1. the Virtual Instrument Description File (VIDF),
2. the Header File (HF),
3. the Data File (DF),
4. the Plot (or Applications) Interface Definition File (PIDF), and
5. the Special Computation File (SCF).

The first three of these files (VIDF, HF, & DF) are necessary within the IDFS formalism while
the latter two (PIDF & SCF) are optional. The PIDF contains interface definitions between the
IDFS information and the display / application programs (see
http://www.idfs.org/Editors/pidfdoc.html). The SCF contains user defined analysis algorithms
which are calculated at run-time using IDFS sources for input and generate "virtual" IDFS output
values (see http://www.idfs.org/scf_paper.html and http://www.idfs.org/scf_docu.PS). SCF files
are linked with all four other IDFS file types and it is assumed that only experienced IDFS users
would make use of them. The contents and creation of the first three above-mentioned files
(VIDF, HF, & DF) are discussed at length within this document.

The IDFS is meant to be general enough to encompass a majority of scientific data sets,
including raw telemetry, processed data, simulation data, and theoretical data. The inclusion of
raw telemetry in this set is of primary importance and indeed was the driving goal in the
development of the IDFS formalism. The storage of processed data is often fraught with
problems. Often times a measurement can be expressed in several sets of units. Saving only one
set of units places undue restraints on many analysis projects while saving all conceivable units
puts undue strain on the archiving ability of the host computer. The gradual refinement of
calibration data often results in changes in the scaling parameters used to create the processed
data causing at times multiple re-creations of a single data set. Storing and using raw data
alleviates many, if not all, of these problems. The IDFS keeps the decompression and scaling
algorithms for each data set within the VIDF as a set of tables which are applied singularly or as
a set to the data as it is accessed to achieve multiple sets of scientific units. Thus, one can easily
update scaling parameters, efficiency tables, etc. within the VIDF as necessary and so insure that
any subsequent access of the data will be correctly converted to the set of physical units
requested.

IDFS Introduction 2 April 21, 2014

1.1 Virtual Instrument Concept

The architecture of the IDFS is based upon the concept of a virtual instrument. A virtual
instrument is a subset of the data taken by an instrument which is grouped together for a number
of reasons, such as similar characteristics, similar data rate, similar word lengths, etc. The
characteristics of the data are defined within the VIDF and the data itself is contained within both
the Header and Data files. A well designed virtual instrument, and hence IDFS data set, is based
on a good understanding of the measured data which includes how the data was acquired, how it
is generally used, and how it is converted to physical units.

All data is stored within the IDFS Header and Data files and is considered to be raw data
within the IDFS paradigm even though it may already have been highly processed (e.g., the
output of a computer simulation). The term raw is used to delineate the stored IDFS data from
IDFS data which has undergone any modification, such as the conversion to a set of physical
units. It is important to note that all IDFS Header and Data records need to be written in network
order. This is done to ensure portability of the IDFS data between platforms (Little Endian vs.
Big Endian). The following section further describes network order.

1.2 Network Order

“Network order” is the canonical form of multi-byte data quantities when they are being
transferred across a network. Multi-byte data quantities are short integers, long integers, and
long long integers in C notation. These types of data quantities are transferred with the most
numerically significant byte sent first. "Host order" is the order in which a particular type of
computer stores multi-byte data quantities internally. [For original citation, see "Internet
Protocol", RFC 791, Information Sciences Institute, Sept. 1981, Appendix B.] Most flavors of
UNIX (including Linux) provide a standard set of C library routines for making conversions
between network order and host order:

Function Action
long htonl(long) Converts a host long to a network ordered long
long ntohl(long) Converts a network long to a host long
short htons(short) Converts a host short to a network ordered short
short ntohs(short) Converts a network short to a host short

Using these routines isolates the user from having to know anything about the byte order used on
a given machine. Note that character strings are considered arrays of single byte quantities, so
they do not require conversion. Since the VIDF is created as an ASCII file, conversions are not
necessary.

1.3 IDFS Lineage

Every measurement with an IDFS inherits a lineage, and through this lineage, can be
uniquely identified and accessed among all of the defined IDFS sets. This lineage is outlined
below.

measurement → virtual instrument → instrument→ experiment→ mission→ project

IDFS Introduction 3 April 21, 2014

The lineage is nothing more than an identification hierarchy and it is not uncommon for one or
more of its levels to be redundant. All data placed within an IDFS are defined under the broad
heading measurement. These are of three types: mode data, primary sensor data, and
secondary sensor data. The latter two are often referred to simply as sensor and calibration
data, respectively. Each measurement is associated with a virtual instrument, which is a
grouping of measurements all of which are obtained from a common instrument. A single
instrument can be the "parent" of multiple virtual instruments, or equivalently, a virtual
instrument does not necessarily contain all of the measurements generated by the instrument.
Atop the instrument level is the experiment. Each instrument is associated with a single
experiment which is defined to be an assemblage of instruments generally headed by a single PI.
It is not unusual for the instrument and the experiment to be one and the same, and if the virtual
instrument is created to contain the total data output of the instrument, it too may be identical to
the instrument and experiment. Each experiment is associated with a mission which is an
aggregate of experiments generally brought together to study a common problem. The highest
level of the lineage is the project which is a coordinated set of missions which may be
performed simultaneously or spread out in time. In many cases, the mission and project are
identical.

The levels in a measurement's lineage are identified through acronyms. The measurement
itself is identified through the VIDF. For example, consider the set of x component magnetic
field measurements acquired by the Vector Magnetometer Experiment on the Upper Atmosphere
Research Satellite. This set of measurements is part of the virtual instrument VMMA which
contains the magnetic field components and necessary correction data. The virtual instrument
was formed from the Vector Magnetometer Experiment termed VMAG which in turn is part of
the Particle Environment Monitor (PEM) experiment on the UARS-1 satellite (mission). The
overall project in this case is UARS. The lineage specification of the measurement is then given
by:

VMMA → VMAG → PEM → UARS-1 → UARS

The orbit/attitude data for a satellite provides a good example of redundant levels in the lineage.
The orbit/attitude data for the Upper Atmosphere Research Satellite (UARS) has the following
IDFS lineage specification:

OAUR → OAUR → OAUR → UARS-1 → UARS

1.4 Measurement Classifications

As mentioned earlier, there are three classes of data within the IDFS. All information
returned by an instrument does not have the same function and this is recognized by the IDFS.
Some are classified as primary measurements, those which return information on the object
being studied. Some information concerns the state of the primary data. This is ancillary data
which is necessary to interpret the primary data correctly. These data are termed secondary
measurements. They contain information that is needed to calibrate the primary measurement,
and thus, are often referred to as calibration measurements. The third type of measurement
concerns data which defines various states of the instrument and which are sometimes necessary
in the processing or use of the primary sensor data. This data is called mode data. Both primary

IDFS Introduction 4 April 21, 2014

and secondary data are stored in the IDFS Data File. Mode data, on the other hand, is placed in
the Header record as status bytes because this type of data is not usually rapidly changing data.

Primary data is, by its very nature, multi-dimensional. Each measurement, by default, is
a function of three spatial coordinates (position) and time. The IDFS transparently handles the
temporal dimension through the creation of time ordered data sets, and if it exists, an azimuthal
or spin angle dependence. Other spatial dimensions, where necessary, are handled through the
creation of position sensors, as generally occurs in virtual instruments containing orbit/attitude
data. More complex measurements, however, may have additional dimensional dependencies
(e.g., energy, mass, frequency, wavelength, etc.). Several common instruments include the E/q
spectrometer which measures particles as a function of density and the imager which measures
intensity as a function of scan position or pixel number. Because such dependencies are
common among many measurements, the IDFS is designed with two categories of primary
sensor data, vector and scalar. Scalar data are measurements which depend at most only on
position and time. Vector data are more complicated and allow for the sensor measurements to
have a functional dependence on a single variable. This variable in IDFS terminology is called
the scanning variable. There is one scanning value per vector element. The set of scanning
elements for a vector are stored in the Header file as a set of indices into a look-up table (kept in
the VIDF) which converts these to appropriate units. All vectors within a logical instrument are
assumed to use the same set of scanning INDICES, i.e., each sensor does not have a unique set of
indices; however, each sensor can have a different set of scan VALUES stored in the VIDF
where the scan indices map to a different set of scan values per sensor. The details on how to
accomplish this are provided in section 4.14 where the "TABLE BLOCK" is described. A vector
sensor also differs from a scalar sensor in that it has associated with it the concept of length; the
number of elements in a single scan.

1.5 Overview of IDFS Files

The three IDFS files, Header, Data, and VIDF, are sufficiently intertwined with enough
inter-dependencies that it is virtually impossible to discuss one of the files without at least some
mention of the other two.

1.5.1 Data File

The vast majority of all of the telemetered data is stored within the Data File. Each Data
file consists of a set of fixed-size Data records. The Data records contain a small set of general
information, which includes the starting accumulation time of the first measurement in the data
array, information on the angular orientation of the virtual instrument, and information on how to
obtain the current state of the virtual instrument. This is followed by the data array. The data
array contains all of the sensor measurements contained within the Data record.

The data array is a set of two-dimensional matrix pairs. In each matrix pair the first
matrix contains the primary sensor data and the second matrix contains the secondary or
calibration data. Not all virtual instruments have secondary (calibration) data, in which case, a
secondary matrix is non-existent. Together these two matrices form what is termed a sensor set.
A sensor set is a logical block of data containing measurements from some, but possibly not all,

IDFS Introduction 5 April 21, 2014

of the sensors defined within the virtual instrument. Each sensor set has associated with it a byte
offset pointer into the Header file. This offset points to the Header record containing the
instrument state data for the information in this sensor set. Within a sensor set then, the
instrument state is assumed to be constant.

The primary data matrix within the sensor set is of order n_sample × n_sen (both
variables being fields within the Header record). Each column then represents data from one of
the virtual instrument sensors and each row represents a measurement associated with the sensor.
If the virtual instrument is a vector instrument, then the number of rows in the matrix is
equivalent to the vector length, otherwise, the number of rows is simply the number of
consecutive measurements which form the sensor set. The secondary matrix within the sensor
set is of order CAL_SAMPLE × n_sen. Each column contains the calibration data for a single
sensor with the number of calibration elements present (CAL_SAMPLE) being determined from
the number of calibration sets defined and the number of elements per calibration set. The
calculation to obtain CAL_SAMPLE is described in detail under the description of the cal_use
field in the VIDF. The secondary matrix (if present) has the same number of columns as the
primary matrix (one column for each sensor), where each column in the secondary matrix
contains data for the same sensor as the corresponding column in the primary matrix. In other
words, sensor A has its primary measurement values in column 1 of the primary matrix and its
calibration values in column 1 of the secondary matrix. However, the length of the columns (#
rows) may be different (n_sample rows in the primary matrix and CAL_SAMPLE rows in the
secondary matrix as described above). The two matrices which constitute a sensor set are shown
pictorially below in Figure 1.

IDFS Introduction 6 April 21, 2014

PRIMARY DATA MATRIX

 N_SEN

N
_
S
A
M
P
L
E

D D D D D D D D D
a a a a a a a a a
t t t t t t t t t
a a a a a a a a a

S S S S S S S S S
e e e e e e e e e
n n n n n n n n n

A B C D E F G H I

SECONDARY DATA MATRIX
 N_SEN

C
A
L
_
S
A
M
P
L
E

C C C C C C C C C
a a a a a a a a a
l l l l l l l l l

S S S S S S S S S
e e e e e e e e e
n n n n n n n n n

A B C D E F G H I

Figure 1. IDFS Sensor Set

To allow for cases when not all data is returned for every Data record, the data_array
has max_nss sensor sets defined (since Data records are fixed length), but there are nss sensor
sets returned within a Data record. The VIDF contains the max_nss definition and nss is one of
the general information fields within the Data record, where nss is less than or equal to max_nss
for any given Data record. Each sensor set has its own associated Header record. The
information within the Header record not only contains the current state of the virtual instrument
but also the number of sensors (columns) returned in the sensor set and the number of elements
(rows) returned per sensor (all sensors within a sensor set must return the same number of
measurements). Identical sensor sets, that is, sensor sets which return data for the same sensors
and return data for periods of time in which the virtual instrument is in the same state, have
identical offsets into the Header file. Thus, a given Header record is used by multiple sensor
sets.

IDFS Introduction 7 April 21, 2014

1.5.2 Header File

A brief introduction to the Header file has already been given in the above description of
the Data file. Each Header record within the Header file contains the state of the instrument, a
set of timing information for the sensors, and the makeup of the Data record sensor sets to which
the Data record is associated. Unlike the Data records, the Header records can have variable
sizes. The first two bytes of any Header record contain the record size. The data and
information contained within the Header file should be slowly varying so that a minimum
number of Header records are actually needed to describe the instrument data over a long period
of time. While this is generally achievable, there are times when it is not and the Header file can
be lengthy. Many times a virtual instrument may switch states between successive sensor sets
creating a change in the Header pointer at each sensor set. If the virtual instrument state is
rotating between a finite set of states, there is only the need for one Header record per state with
the Header offsets assigned to the sensor sets pointing to the appropriate Header record.

The only telemetered data which is stored within the Header records is found in the
mode_index field. This is a linear array of defined instrument status bytes (modes). These
status bytes, in general, define conditions or states of the virtual instrument which may be
pertinent in the processing of the primary sensor data. Other Header data fields include sensor
set timing values, number of sensors returned and their order, number of scanning steps returned
and their offsets, and data quality flags per sensor. These fields may be preset values, and all or
some of which may be functions of the instrument status.

1.5.3 VIDF File

The last of the three necessary IDFS files is the VIDF file. The VIDF describes the IDFS
virtual instrument and sets up all of the parameters which are needed to interface with the IDFS
data and header files. Its purpose is to provide both a description of the measurements being
stored in the IDFS and to provide information to the IDFS data access software which extracts
data from the IDFS files and converts each of the measurements into one or more sets of physical
units. The VIDF is meant to be easily updated and to contain all of the data which may be
periodically updated due to either refinements in the instrument calibration or due to degradation
within the instrument. There must be at least one VIDF file defined for each IDFS virtual
instrument. If data within the VIDF changes with time, for example calibration coefficients,
additional VIDF files can be established, the period of applicability of each being given within
the VIDF file itself. Algorithms within the VIDF are designed to be used by the IDFS data
access software to transform the raw IDFS data into physical units. Each step within an
algorithm can be applied or omitted which allows a single algorithm to sometimes generate
several sets of physical units depending on the steps included. For example, the output of a
temperature sensor may be converted to volts in the first step of an algorithm, to degrees C in the
second step and to degrees F in the third. Each can be obtained by the user through the IDFS
data access software by knowing which algorithm steps to include in the conversion process.

When the IDFS paradigm was first developed, all three files – the header, data and VIDF

file – were created and archived as binary files, which by definition, resulted in fixed-formatted
files. To ease the effort entailed in maintaining the VIDF files, a shift was made to create the

IDFS Introduction 8 April 21, 2014

VIDF file as an ASCII file; however, the IDFS data access software still expected a binary file.
A conversion program was written and is utilized to transform the VIDF ASCII file into a binary
file for use with the IDFS data access software. While the VIDF file became easier to maintain,
the file itself is still considered a fixed-formatted file since new fields cannot be added due to the
binary format reliance.

As more and more data sets were being converted into the IDFS storage format, the need

to expand the current set of fields defined within the VIDF file finally became a reality. In order
to preserve backwards compatibility with data sets already in IDFS format, software was
modified to enable the parsing of a token-tagged, field-extensible VIDF file, while maintaining
the ability to parse the old, fixed-formatted binary VIDF files. Although a converter program
has been developed to transform a fixed-formatted ASCII VIDF file into a token-tagged VIDF
file, there is no mandate at the present time to force the migration to the new format. Keep in
mind that although new fields can be defined and stored in the token-tagged VIDF files, these
fields are not automatically utilized by an end-user application or the IDFS data access software.
Code changes must be made to the software which parses the VIDF file and returns information
contained in the VIDF file in order to look for these newly defined fields.

1.6 File Naming Conventions

There is a simple file naming convention used when creating a set of IDFS files. Each
virtual instrument is assigned an acronym up to 8 characters in length. Since this acronym is
used system-wide when accessing a virtual instrument, all IDFS file names begin with the virtual
instrument acronym. For Header, Data, and VIDF files this is followed by 12 characters, the first
11 specifying the starting time of the file and the final character indicating the file type. The 11
characters used in specifying the starting time of the file have the format

YYYYDDDHHMM

where YYYY is the year (e.g., 1992), DDD is the day of year (e.g., 020), HH is the hour and
MM is the minute. The last character in the file name is a D if the file is a Data File, an H if the
file is a Header file, and a V if the file is a fixed-formatted VIDF file. An example IDFS file set
for the logical instrument TDIE might appear as:

TDIE19922302034D
TDIE19922302034H
TDIE19922302034V

where each file has a starting time of 20:34 (HH:MM) on day 230 of year 1992. The first file is
the Data file, the second is the Header, and the third is the VIDF. If the VIDF file is a token-
tagged VIDF file, the suffix “.v3” is appended to the filename, e.g. TDIE19922302034V.v3.

1.7 IDFS Assumptions

Within the IDFS paradigm, the assumption is that the spacecraft spins around Axis C, as
illustrated in Figure 2 below, and all calculations assume that Axis C is the spin axis. In

IDFS Introduction 9 April 21, 2014

addition, the assumption is that all calculations are made with respect to a right-handed
coordinate system. These assumptions are important for pitch angle computations (see sections
4.10 and 4.15.1)

Figure 2. IDFS Axes Definition

For most of the data sets that have been stored in IDFS format, the x-axis of the

spacecraft has been defined as Axis A, the y-axis of the spacecraft has been defined as Axis B
and the z-axis of the spacecraft has been defined as Axis C, resulting in the +z axis being defined
as the spin axis. However, this spacecraft naming convention is not always followed by all space
exploration missions. For example, with the Cluster mission, the following spacecraft situation
is defined:

Figure 3. Cluster Axes Definitions

x-axis
Axis C

y-axis
Axis A

z-axis
Axis B

Axis C

Axis A

Axis B

IDFS Introduction 10 April 21, 2014

For Cluster, the spacecraft defines the spin axis as the x-axis. Thus, the axes definition for IDFS
are Axis A is the spacecraft y-axis, Axis B is the spacecraft z-axis and Axis C is the spacecraft x-
axis. In order to avoid confusion, references to axes through out this document will be made
with respect to Axis A, B and C as opposed to x, y and z.

Fixed-Formatted VIDF 11 April 21, 2014

2. Structure for Fixed-Formatted Virtual Instrument Description
File (VIDF)

The fixed-formatted VIDF file is created as an ASCII file, but must be converted to a binary file
before it can be used by the IDFS data access software developed at SwRI (See IDFS
Programmer's Manual). The program used to convert the VIDF from ASCII to binary uses
network order protocols when writing the binary VIDF file. The ASCII VIDF file is considered
the "master" and is the archived file. If modifications to the VIDF are necessary, they are done
in the ASCII file which should replace the old ASCII VIDF in the archive. The binary VIDF file
is generated from the ASCII file using the binary conversion software, mk_idf. The SwRI-
developed database and catalog system automatically runs the mk_idf filter when fixed-formatted
VIDF files are promoted from the archive. For version control, mk_idf first writes out an 8-byte
version number into the binary VIDF before converting and writing the ASCII VIDF to the
binary VIDF.

Each line in the VIDF file consists of three blocks as shown below:

FORMAT | ENTRY | COMMENTS

The FORMAT field is a single ASCII character which defines how the ENTRY field is
interpreted by the binary conversion program (mk_idf). The FORMAT specifier may be a
character defining how the entry data is to be stored in the binary VIDF, an information flag
signifying the beginning of an array in the VIDF, or that the field is to be ignored. The ENTRY
block contains the VIDF data value(s) for the particular VIDF field being defined. The block
may contain several entries which are separated by spaces. The ENTRY block is the only block
which is stored in the binary version of the VIDF. The COMMENTS block is a set of optional
text not processed by mk_idf. The COMMENTS block is generally used to identify the VIDF
lines, and must be preceded by the characters "/*" to be recognized by mk_idf as comments.

The FORMAT block must be one of seven characters recognized by mk_idf.
The characters are defined in the table below.

FORMAT CHARACTER DEFINITIONS
CHARACTER DEFINITION USAGE
n null entry information
m beginning of array entry information
l entries are stored as 4 bytes entry size
s entries are stored as 2 bytes entry size
b entries are stored as 1 byte entry size
t long text information stored as 79 bytes entry size
T short text information stored as 20 bytes entry size

The FORMAT n is used to define a field entry which is null, that is, which has no entry

in the VIDF. The binary conversion program expects to see nothing in the ENTRY block after
this format. Null entries are used when the VIDF parameter or data is not used for the virtual

Fixed-Formatted VIDF 12 April 21, 2014

instrument being defined. For example, a virtual instrument which does not have a fill value
defined (fill_flg = 0) will have the null entry for the fill value:

b 0 /* fill_flg */
n /* fill */

The FORMAT m is used to define the beginning of an array entry in the VIDF. The

binary conversion program expects to find two entries in the ENTRY block on this line. The
first is the number of elements in the array and the second is the number of elements per line.
The entries occur on the next N lines. The number of entries on the last line only need to
complete the array. An example showing how an array of 18 elements, 5 elements per line, is
specified in the VIDF is shown below. The 18 values will be stored as 1 byte quantities.

m 18 5 /* array */
b 0 0 1 0 2 /* 00000-00004 */
b 2 2 6 4 4 /* 00005-00009 */
b 0 0 8 8 8 /* 00010-00014 */
b 3 3 3 /* 00015-00017 */

In the VIDF, an array of L elements (ex: 18) begins indexing at 0 and ends at element L-1 (ex:
17).

An overview of the VIDF fields is shown in the tables below. The VIDF file consists of a set
of fields which are either individual entries or block entries. Block entries are themselves sets of
individual fields. Each individual field is characterized by a base length (byte size), an array size
and a repetition number. In these tables, all fields whose names are given in all lower case letters
represent individual field entries while fields whose names given in all upper case characters
represent blocks of fields. These blocks of fields are defined in tables below the main VIDF
definition. Note that TABLES and CONSTANTS blocks of fields do not have either a base size
or array size associated with them, but they do have a repetition size.

VIDF FILE FORMAT
FIELD
NAME

FIELD
DESCRIPTION

BASE
SIZE

(Bytes)

ARRAY
SIZE

FIELD
REPETITION

project Project description 1 79 1
mission Mission dexription 1 79 1
experiment Experiment description 1 79 1
v_inst Virtual instrument description 1 79 1
contact Five line contact address 1 79 5
num_comnts Number of comment lines 2
comments General comments 1 79 num_comnts
ds_year Start year 2
ds_day Start day 2
ds_msec Start time (msec) 4
ds_usec Offset from ds_msec 2

Fixed-Formatted VIDF 13 April 21, 2014

VIDF FILE FORMAT
FIELD
NAME

FIELD
DESCRIPTION

BASE
SIZE

(Bytes)

ARRAY
SIZE

FIELD
REPETITION

de_year End year 2
de_day End day 2
de_msec End time (msec) 4
de_usec Offset from de_msec 2
smp_id Instrument sweep identifier 1
sen_mode Data matrix format 1
n_qual Number of quality definitions 1
cal_sets Number of calibration sets 1
num_tbls Number of entered tables 1
num_consts Number of entered constants 1
status Number of instrument status defs 1
pa_defined Pitch angle information status 1
sen Number of sensor definitions 2
swp_len Elements in full sample sequence 2
max_nss Maximum number of sensor sets 2
data_len Size of data record 4
fill_flg Fill data flag 1
fill Fill data code 4
da_method Data accumulation code 1
status_names Status definitions 1 79 status
states Definitions per status 2 status 1
sen_name Sensor definitions 1 79 sen
cal_names Calibration definitions 1 79 cal_sets
qual_name Data quality definitions 1 79 n_qual
pa_format Pitch angle computation format 2
pa_project Project of magnetic field data 1 20 1
pa_mission Mission of magnetic field data 1 20 1
pa_exper Exper of magnetic field data 1 20 1
pa_inst Inst of magnetic field data 1 20 1
pa_vinst Virtual inst of magnetic field data 1 20 1
pa_b1b2b3 B1, B2, B3 sensor numbers 2 3 1
pa_apps Number of tables to apply 2
pa_tbls Table numbers 2 pa_apps 1
pa_ops Defined operation for tables 2 pa_apps 1
d_type Data format 1 sen 1
tdw_len Data word length (bits) 1 sen 1
sen_status Sensor status 1 sen 1
time_off Time correction (msec) 4 sen 1
cal_use Calibration table usage def. 2 cal_sets 1
cal_wlen Calibration word length (bits) 1 cal_sets 1
cal_target Target of calibration set 1 cal_sets 1

Fixed-Formatted VIDF 14 April 21, 2014

VIDF FILE FORMAT
FIELD
NAME

FIELD
DESCRIPTION

BASE
SIZE

(Bytes)

ARRAY
SIZE

FIELD
REPETITION

TABLES Put Table Information Here num_tbls
CONSTANTS Put Constants Information Here num_consts

The TABLES field represents multiple fields which define a single table block entry in
the VIDF. There are num_tbls blocks. The structure of the TABLE block is shown below.

VIDF TABLE FORMAT
FIELD
NAME

FIELD
DESCRIPTION

BASE
SIZE

(Bytes)

ARRAY
SIZE

FIELD
REPETITION

tbl_sca_sz Number of elements in scaling table 4
tbl_ele_sz Number of elements in table 4
tbl_type Table type 1
tbl_comnts Lines in table description 2
tbl_desc Table description 1 79 tbl_comnts
tbl_var Variables table operates on 1
tbl_expand Expand to look-up format flag 1
crit_act_sz Size of critical action array 4
crit_status Sensor critical status bytes 1 sen 1
crit_off Sensor offsets into critical action array 2 sen 1
crit_action Critical action array 4 crit_act_sz 1
tbl_fmt Table format 1 sen or status 1
tbl_off Sensor offset into table 4 sen or status 1
tbl_sca Scaling table 1 |tbl_sca_sz| 1
tbl Table 4 tbl_ele_sz 1

The CONSTANTS field represents multiple fields which define a single constant block
entry in the VIDF. There are num_consts blocks. The structure of the CONSTANTS block is
shown below. Only defined CONSTANTS identifiers are allowed as constant block information.
Refer to the discussion in the "CONSTANTS BLOCK" section.

VIDF CONSTANT FORMAT
FIELD
NAME

FIELD
DESCRIPTION

BASE
SIZE (Bytes)

ARRAY
SIZE

FIELD
REPETITION

const_id Constant type identifier 1
const_comnts Lines in constant description 2
const_desc Constant description 1 79 const_comnts
const_sca Scaling for constants 1 sen 1
const Constants 4 sen 1

Token-Tagged VIDF 15 April 21, 2014

3. Structure for Token-Tagged Virtual Instrument Description File
(VIDF)

The token-tagged VIDF file is created as an ASCII file consisting of multiple sections. The

token-tagged VIDF file consists of all the same fields that are listed in the VIDF File Format
Table defined in section 2, with the exception of the following fields:

1. num_comnts – not needed since the comments are simply included in the VIDF file,
using the same syntax as C.

2. pa_defined – this flag is set based upon the existence of a structure which contains pitch
angle information contained within the token-tagged VIDF.

3. tbl_comnts – not needed since the comments are simply included in the VIDF file, using
the same syntax as C.

4. const_comnts – not needed since the comments are simply included in the VIDF file,
using the same syntax as C.

While the same information is contained in both VIDF formats, some of the information has
been restructured in the token-tagged VIDF file in the following manner:

1. sen_name, d_type, tdw_len, sen_status, and time_off – these fields are grouped
together in a structure that is defined to hold all information pertinent to each individual
IDFS sensor.

2. pa_format, pa_project, pa_mission, pa_exper, pa_inst, pa_vinst, pa_bxbybz,
pa_apps, pa_tbls and pa_ops – these fields are grouped together in a structure that is
defined to hold all pitch angle information.

3. status_names and states – these fields are grouped together in a structure that is defined
to hold all information pertinent to each individual instrument status byte.

4. cal_names, cal_use, cal_wlen, and cal_target – these fields are grouped together in a
structure that is defined to hold all information pertinent to each individual IDFS
calibration set.

5. VIDF Tables definition - these fields are grouped together in a structure that is defined
to hold all information pertinent to each individual table definition.

6. VIDF Constants definition - these fields are grouped together in a structure that is
defined to hold all information pertinent to each individual constant definition.

The token-tagged VIDF format defines one additional field (version) that is not contained within
the fixed-formatted VIDF ASCII file.

When it exists, the token-tagged VIDF file is named according to the filename
convention defined in section 1.6 appended by “v3”. Each token-tagged VIDF file consists of a
set of fields, each field occupying a single line. Comments are allowed and are defined as any
text following the “/*” symbols and ending with the “*/” symbols. Comments may be
continued across multiple lines. The comment will be considered complete when the “*/”
combination is encountered.

Token-Tagged VIDF 16 April 21, 2014

Starting with version 3.0 of the token-tagged VIDF file, all VIDF information is kept in a
structure like format. The token-tagged VIDF file starts with the keyword “vidf” and then the
virtual instrument name followed by an open brace (“{“). All other information is below the
opening brace. The token-tagged VIDF file is ended with a closure brace (“}”) indicating the
end of the file. Each section is broken up into another enclosing set of braces. Entries within
each section contain five fields. These five fields are: 1) type, 2) name, 3) equal sign, 4) value
and 5) semicolon. Type describes the class of variable name. Valid types must be one of the
four values listed below. The name field contains a keyword which is defined in the description
of each field in section 4. The equal sign field is the assignment operator and is a “=”. The
value field contains the quantity to assign to the name keyword. Values enclosed within double
quotes (“) are taken as character strings, while those enclosed within apostrophes (‘) are
interpreted as single characters. Numeric values without a decimal have an integer value and
those with a decimal have a real or float value. Examples may be found below under valid types.

Valid types are:

• string (e.g. string mission = “D1HE”;)
• int (e.g. int s_year = 1940;)
• float (e.g. float version = 3.0;)

For example:

vidf ABCD {
 float version = 3.0;
 int n_sensors = 1;
 struct Sensor0 {
 string name = “First Sensor”;
 int d_type = 0;
 int status = 1;
 int tdw_len = 8;
 int time_offset = 0;
 };
}

Entries within a block may be in any order and values may also be in any order or even absent;
however, the order of appearance of some fields may be critical in obtaining a proper number
result. Any omitted entries may cause the plotting / analysis software to fail.

If this seems unclear, examples are provided for each of the VIDF fields described in section 4.
Both a fixed-formatted VIDF and a token-tagged VIDF entry is provided for each field.

VIDF Field Definitions 17 April 21, 2014

4. Fields Common to Fixed-Formatted and Token-Tagged VIDFs

All of the fields that are defined in the fixed-formatted VIDF file are identically defined in
the token-tagged VIDF file; however, the converse is not true. There are a few fields that have
been added for the token-tagged VIDF files. These fields will be described in section 5. This
section will describe in detail the individual fields common to both VIDF file formats. Where
appropriate, fields which are linked together by a common basis will be grouped together under a
single heading. Sample VIDF entries are included for each field or group of fields for both the
fixed-formatted and token-tagged VIDF files. These are shown exactly as they would appear in
the ASCII VIDF file.

For fixed-formatted VIDF files, keep in mind that while the detailed descriptions are not
necessarily in the order that they appear in the table described in section 2, the fields MUST be
in the order outlined in section 2 in the actual ASCII VIDF file. In addition, all fields MUST
have an entry (use null, n, if not applicable).

4.1 LINEAGE

There are four fields within the VIDF that document the lineage of the virtual instrument,
including the virtual instrument itself. The lineage allows one to trace a virtual instrument back
to its roots so to speak. It should be noted that the lineage of a virtual instrument within the
VIDF is slightly different than the lineage of a virtual instrument within the software that has
been developed to interface with the IDFS (IDFS database and access routines). The IDFS
archival, catalog, and data access software operate on a five field lineage, adding an instrument
field between the experiment and virtual instrument fields in the VIDF. The four VIDF lineage
fields are described below.

4.1.1 project

A maximum 79 character description which identifies the particular project with which
the virtual instrument is associated. It is meant to be a brief global description of the goal or
goals of the project which is generally derived from the project acronym. This field should be
identical for all virtual instruments associated with instruments within this project. The project
acronym as used in the VIDF lineage should be included.

4.1.2 mission

A maximum 79 character description which identifies the particular mission within a
project with which the virtual instrument is associated. In many projects there is only a single
mission and the project and mission name and descriptions are identical. This field should be
identical for all virtual instruments associated with instruments in this mission. The mission
acronym as used in the VIDF lineage should be included.

4.1.3 experiment

A maximum 79 character description which identifies the particular experiment within a
mission from which the virtual instrument is derived. This field should be identical for all virtual
instruments which have been derived from this experiment. The experiment acronym as used in
the VIDF lineage should be included.

VIDF Field Definitions 18 April 21, 2014

4.1.4 v_inst
A maximum 79 character description of the virtual instrument and its contents. The

virtual instrument acronym as used in the VIDF lineage should be included.

4.1.5 Example LINEAGE Entries
Shown below are two example VIDF lineage field entries for a fixed-formatted VIDF

file. The lineage entries are contiguous within the VIDF. The first example is for an engineering
virtual instrument from the UARS satellite and the second example is for an electromagnetic
wave spectrometer from the TSS-1 satellite.

t Upper Atmospheric Research Satellite (UARS) /* project */
t Initial UARS Flight (UARS-1) /* mission */
t UARS Particle Environment Monitor (PEM) /* exper */
t PEM 2 Second Current Monitors (ENIA) /* v_inst */

t Tethered Satellite System (TSS) /* project */
t First Tethered Satellite System Flight (TSS-1) /* mission */
t Satellite Plasma and Electromagnetic Wave Inst (RETE) /* exper */
t Band A: Low Frequency Electromagnetic Wave Data (RTLA) /* v_inst */

 The same two examples for a token-tagged VIDF file are as follows:

string mission = "Upper Atmospheric Research Satellite (UARS)"; /* mission */
string spacecraft = "Initial UARS Flight (UARS-1)"; /* spacecraft */
string experiment = "UARS Particle Environment Monitor (PEM)"; /* exp_desc */
string instrument = "PEM 2 Second Current Monitors (ENIA)"; /* imst_desc */

string mission = "Tethered Satellite System (TSS)"; /* mission */
string spacecraft = "First Tethered Satellite System Flight (TSS-1)"; /* spacecraft */
string experiment = "Satellite Plasma and Electromagnetic Wave Inst (RETE)"; /* exp_desc */
string instrument = "Band A: Low Frequency Electromagnetic Wave Data (RTLA)"; /* inst_desc */

4.2 CONTACT Information

4.2.1 contact

This is a set of five lines, each a maximum of 79 characters, which contains the name and
address of someone who can act as a focus for questions which might arise concerning the
experiment, the data, or the design of the VIDF. If less than five lines are utilized, an empty
definition must be provided for the missing lines.

4.2.2 Example CONTACT Information Entries

Shown below are two example VIDF contact field entries for a fixed-formatted VIDF
file.

VIDF Field Definitions 19 April 21, 2014

m 5 1 /* contact */
t Dr. David Winningham /* 000 */
t Southwest Research Institute /* 001 */
t 6220 Culebra Road /* 002 */
t San Antonio, Texas 78238-0510 /* 003 */
t PH: (210) 522-3075 email:david@cluster.space.swri.edu /* 004 */

m 5 1 /* contact */
t Dr. David Winningham /* 000 */
t Southwest Research Institute /* 001 */
t 6220 Culebra Road /* 002 */
t San Antonio, Texas 78238-0510 /* 003 */
t /* 004 */

The same two examples for a token-tagged VIDF file are as follows:

string contact = “Dr. David Winningham”;
string contact = “Southwest Research Institute”;
string contact = “6220 Culebra Road”;
string contact = “San Antonio, Texas 78238-0510”;
string contact = “PH: (210) 522-3075 email:david@cluster.space.swri.edu”;

string contact = “Dr. David Winningham”;
string contact = “Southwest Research Institute”;
string contact = “6220 Culebra Road”;
string contact = “San Antonio, Texas 78238-0510”;
string contact = “”;

4.3 COMMENTS

The free-form comments portion of the VIDF is comprised of two fields which are
described below.

4.3.1 num_comnts

The number of comment lines within the comment field.

4.3.2 comments
A set of free-form text, each line being a maximum of 79 characters in length. The

number of lines of text in the comment field is defined in the num_comnts entry. Comment
lines may be used for any general documentation. At a minimum, the comment field should
contain the five field IDFS software reference, any caveats and limitations of the data set, a
reference to an experimental paper, any algorithms which are defined for the conversion of the
raw VIDF data into physical units and the physical units. If the data is already in physical units
and no conversion is necessary the units of the data should be given.

VIDF Field Definitions 20 April 21, 2014

4.3.3 Example COMMENTS Entry
Shown below is an example VIDF comment block entry for a fixed-formatted VIDF file

for an electron spectrometer which was flown on the Tethered Satellite. Note the detail in
describing the algorithms available. For each algorithm, the type of data that is affected, which
tables are to be applied, what mathematical operations are associated with each table, and the
resulting units after conversion are described. Although the table information is needed by the
IDFS data access routine for proper unit conversion, this information is NOT accessed through
the VIDF, but rather the applications programs need to provide the IDFS data access routines
with this information based on the comments given here. SwRI has developed a "Plot (or
Applications) Interface Definition File" (PIDF) format and interface which includes the ability to
store the table order / operator information and for applications programs to access this
information as well as other useful information. The PIDF is intended to work in conjunction
with the VIDF. See http://www.idfs.org/Editors/pidfdoc.html for more information about the
PIDF. To understand how tables are applied and available operations, see the "TABLE
BLOCK" section.

s 31 /* num comnts */
m 31 1 /* comment */
t TSS TSS-1 ROPE ROPE RPEA /* 000 */
t /* 001 */
t The ROPE SPES particle data are known to have two sources of noise. /* 002 */
t One is a light leak and the 2nd is a plasma entry not through the /* 003 */
t collimators. Both occur as localized positions in the orbit and neither /* 004 */
t is detrimental to the data. /* 005 */
t /* 006 */
t The following is a list of tables which are in this VIDF /* 007 */
t TABLE 0: center energies (eV) /* 008 */
t TABLE 1: telemetry decom table /* 009 */
t TABLE 2: 1/(detector efficiencies) /* 010 */
t TABLE 3: geometry factors (cm**2-str) /* 011 */
t TABLE 4: dE/E /* 012 */
t TABLE 5: center energies (ergs) /* 013 */
t TABLE 6: constant needed in going to dist. fn /* 014 */
t TABLE 7: (center energies)**2 (ergs**2) /* 015 */
t TABLE 8: ascii definitions of status states /* 016 */
t /* 017 */
t The following units can be derived from the tables. /* 018 */
t The format is to give the tables applied followed by the /* 019 */
t operations and unit definitions /* 020 */
t /* 021 */
t DATA TABLES OPERS UNIT /* 022 */
t Scan 0 0 eV /* 023 */
t Sensor 1 0 cnts/accum /* 024 */
t Sensor 1,2 0,3 cnts/accum (eff. cor) /* 025 */
t Sensor 1,2 0,153 cnts/sec /* 026 */
t Sensor 1,2,3,4 0,153,4,4 cnts/(cm**2-str-s) /* 027 */

VIDF Field Definitions 21 April 21, 2014

t Sensor 1,2,3,4,0 0,153,4,4,4 cnts/(cm**2-str-s-eV) /* 028 */
t Sensor 1,2,3,4,0,5 0,153,4,4,4,3 ergs/(cm**2-str-s-eV) /* 029 */
t Sensor 1,2,3,4,6,7 0,153,4,4,3,4 sec**3/km**6 /* 030 */

The same example for a token-tagged VIDF file is as follows:

/*
 * TSS TSS-1 ROPE ROPE RPEA
 *
 * The ROPE SPES particle data are known to have two sources of noise.
 * One is a light leak and the 2nd is a plasma entry not through the
 * collimators. Both occur as localized positions in the orbit and neither
 * is detrimental to the Data.
 *
 * The following is a list of tables which are in this VIDF
 * TABLE 0: center energies (eV)
 * TABLE 1: telemetry decom table
 * TABLE 2: 1/(detector efficiencies)
 * TABLE 3: geometry factors (cm**2-str)
 * TABLE 4: dE/E
 * TABLE 5: center energies (ergs)
 * TABLE 6: constant needed in going to dist. fn
 * TABLE 7: (center energies)**2 (ergs**2)
 * TABLE 8: ascii definitions of status states
 *
 * The following units can be derived from the tables.
 * The format is to give the tables applied followed by the
 * operations and unit definitions
 *
 * DATA TABLES OPERS UNIT
 * Scan 0 0 eV
 * Sensor 1 0 cnts/accum
 * Sensor 1,2 0,3 cnts/accum (eff. cor)
 * Sensor 1,2 0,153 cnts/sec
 * Sensor 1,2,3,4 0,153,4,4 cnts/(cm**2-str-s)
 * Sensor 1,2,3,4,0 0,153,4,4,4 cnts/(cm**2-str-s-eV)
 * Sensor 1,2,3,4,0,5 0,153,4,4,4,3 ergs/(cm**2-str-s-eV)
 * Sensor 1,2,3,4,6,7 0,153,4,4,3,4 sec**3/km**6
 */

4.4 TIME Information

Each VIDF file has associated with it a beginning and an ending time. This time
describes the time period over which the information in the VIDF is valid for the virtual

VIDF Field Definitions 22 April 21, 2014

instrument. The times are given in two sets of identical data fields describing the beginning time
and ending time. Each set of fields has the general format:

year / day / millisecond of day / microsecond

It is normal to define the first and last VIDF files defined for a virtual instrument to have
a beginning time earlier than the start of the accumulation of data and an ending time later than
the instrument turn off.

The start and stop time definitions are defined in the eight fields below, and the entries
are contiguous in the VIDF in the order given below.

4.4.1 ds_year

The starting year field with valid entries running from 1 to 9999

4.4.2 ds_day
The starting day field with valid entries running from 1 to 365 or 366 depending if the

year is a leap year or not.

4.4.3 ds_msec
The starting millisecond of day field with valid entries running from 1 to 86400000.

4.4.4 ds_usec
The starting microsecond field. This is an offset from the millisecond of day field such

that seconds of day is obtained by:

sec = ds_msec *10–3 + ds_usec * 10-6

4.4.5 de_year

The ending year field with valid entries running from 1 to 9999. If only one (1) VIDF is
to be used for the whole duration of the mission, set this value to -1 to expedite processing.

4.4.6 de_day

The ending day field with valid entries running from 1 to 365 or 366 depending if the
year is a leap year or not. If only one (1) VIDF is to be used for the whole duration of the
mission, set this value to -1 to expedite processing.

4.4.7 de_msec

The ending millisecond of day field with valid entries running from 1 to 86400000. If
only one (1) VIDF is to be used for the whole duration of the mission, set this value to -1 to
expedite processing.

VIDF Field Definitions 23 April 21, 2014

4.4.8 de_usec
The ending microsecond field. This is an offset from the millisecond of day field such

that seconds of day is obtained by:

sec = de_msec * 10–3 + de_usec * 10–6

If only one (1) VIDF is to be used for the whole duration of the mission, set this value to -1 to
expedite processing.

4.4.9 Example TIME Information Entry

Shown below is an example set of VIDF time information fields. The data actually
begins in 1981, but the example shows an earlier beginning time (which is okay and normal to
do). At the ending time there is a change in detector efficiency that is addressed by a second
VIDF which begins at the ending time of this VIDF. Note that it is normal and desirable for the
ending time to be several years after the predicted mission termination if this VIDF is the last
one for the virtual instrument. In most cases, there is only one VIDF defined for the duration of
the virtual instrument's mission.

s 1980 /* ds_year */
s 1 /* ds_day */
l 0 /* ds_msec */
s 0 /* ds_usec */
s 1994 /* de_year */
s 52 /* de_day */
l 1240 /* de_msec */
s 860 /* de_usec */

The same example for a token-tagged VIDF file is as follows:

int s_year = 1980; /* ds_year */
int s_day = 1; /* ds_day */
int s_msec = 0; /* ds_msec */
int s_usec = 0; /* ds_usec */
int e_year = 1994; /* de_year */
int e_day = 52; /* de_day */
int e_msec = 1240; /* de_msec */
int e_usec = 860; /* de_usec */

4.5 SENSOR Information

 The IDFS sensors are described within the VIDF through a set of seven fields, which are
scattered throughout the VIDF file. These fields have two purposes; (1) to establish the interface
and control parameters necessary for the IDFS data access software to seamlessly interface with
the IDFS, and (2) to provide a definition of what is contained within each sensor. The seven

VIDF Field Definitions 24 April 21, 2014

sensor related fields – smp_id, swp_len, sen, sen_name, d_type, tdw_len and sen_status - are
described below.

4.5.1 smp_id
 This field defines the type of sensor associated with the virtual instrument. A virtual
instrument can only contain one type of sensor. The three recognized sensor types are defined in
the table below.

SMP_ID FIELD DEFINITIONS
VALUE DEFINITION

0 Partial vector data
1 Full vector data
2 Scalar data

A vector sensor differs from a scalar sensor in that it has known functional dependencies

other than time or position. The IDFS can accommodate one of these functional dependencies
through the scan_index field in the header record which is nothing more than a set of indices
into an optional look-up table which must be defined within the VIDF. The length of the
scan_index array is identical to the number of elements in the vector being returned. An
example of a vector sensor is one made from a particle spectrometer which returns counts as a
function of energy in eV. The data has the form CR(eV) and the values in the scan_index are
offsets into a table containing the center energy at which each data sample was obtained. The
base measurement for a vector sensor in this case is one scan of data.

If only fractional portions of the vectors are stored under any given sensor then the IDFS
is defined to be stored as "partial vector data". The "full vector data" definition is used when the
entire sweep is stored.

4.5.2 swp_len

This field defines the maximum number of vector elements which can be defined for any
sensor and is not necessarily the vector length of the sensors returned in the IDFS data record.
The value is used when determining the length of look-up tables associated with the sensor scan
index. Another way of putting this is, the swp_len field should be set to one more than the
maximum value which could be placed in the scan_index array in the IDFS header record.

As an example, a vector sensor always returns 32 elements which are indexed from 0
through 63. It returns either the odd or the even 32 elements in the set. In this case, swp_len
must be set to 64 even though the sensor will never return 64 elements in a single data record.
This is because the scan_index array will have values 0, 2, 4 ... 62 when the even elements are
returned and 1, 3, 5 ... 63 when the odd elements are returned.

For scalar virtual instruments (see smp_id) swp_len should be set to 1, and for scanning
instruments swp_len should be greater than 1.

VIDF Field Definitions 25 April 21, 2014

4.5.3 sen
This field defines the maximum number of sensors which will be defined in the VIDF.

Any or all of these sensors may be returned within the IDFS data records. Not all of the sensors
which are defined need to be returned.

4.5.4 sen_name

This field is an array of sen text fields each a maximum of 79 characters in length. Each
field is a description of one of the sensors defined within the VIDF. The order of the definitions
in the array is assumed to correspond to the sensor number. The first text field describing sensor
0 and so forth. These numbers are used to indicate in the IDFS header record field,
sensor_index, which sensors have data being returned in a particular data record.

4.5.5 d_type

This field is an array of sen elements which indicates the data formats associated with
each sensor, that is, how the data is represented within the IDFS data files for each of the defined
IDFS sensors. This allows sensors within the same virtual to have different data formats. This
field does not apply to any calibration data which may also be stored within the IDFS data files.
Unless otherwise specified, calibration data is always interpreted as unsigned integer, binary data
(refer to section 5.7.3). The seven recognized formats are listed below: The floating point IDFS
representations are detailed in the next section.

D_TYPE FIELD DEFINITIONS
VALUE DEFINITIONS EXPONENT BASE WORD LENGTH (bits)

0 unsigned integer, binary data - tdw_len
1 signed integer, binary data - tdw_len
2 single precision, floating point data 10 32
3 double precision, floating point data 10 64
4 half precision 1, floating point data 10 16
5 half precision 2, floating point data 2 16
6 half precision 3, floating point data 2 16

4.5.5.1 IDFS Floating Point Formats

Within the IDFS, all floating point values are stored in internally defined formats that are
expanded upon to use the native floating point format of the computer on which the data is being
extracted.

There are several common points between the IDFS floating point formats. In each
format, the mantissa has an inherent decimal point to the LEFT of the first digit. Relative motion
of the decimal point from its default location is controlled by the exponent. Both the exponent
and mantissa have their sign bits in the most significant bit of their respective bit fields, unless
otherwise specified, where a 0 bit value represents the positive sign and a 1 bit value represents a
negative sign. The floating point storage formats are described below.

VIDF Field Definitions 26 April 21, 2014

The single precision floating point data is stored as a 32-bit integer according to the
following format:

Mantissa Exponent

Byte 3 Byte 2 Byte 1 Byte 0
31 7 6 0

The mantissa is formed by the most significant 25 bits giving 7 digits of precision (0 to
±9999999). All seven digits are used in the representation of any mantissa. The exponent is
located in the least significant 7 bits of the 32-bit word and has a range of ±63. Under these
guidelines, 1.57 would be written as a mantissa of +1570000 and an exponent of +1.

The double precision floating point data, which has yet to be implemented in the IDFS
data access software, will be stored as a 64-bit integer according to the following format:

Mantissa Exponent
Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0
63 9 8 7 0

The mantissa is formed by the most significant 55 bits giving 16 digits of precision (0 to
±9999999999999999). All sixteen digits are used in the representation of any mantissa. The
exponent is located in the least significant 9 bits of the 64-bit field and has a range of ±255.
Under these guidelines, -9.9734 × 10-6 would be written as a mantissa of -9973400000000000
and an exponent of -5.

There are 3 half precision floating point formats. The difference between them is in the
accuracy of the mantissa and the range of the exponent. Exponents differ in their base, being
either base 10 or base 2. The latter give a smaller exponent range but better representation of the
floating point values being stored.

Both the half precision 1 and half precision 2 floating point data (d_type 4 and d_type 5)
are stored as 16-bit integers. They are defined similar to the 32-bit single precision float with the
exception that the mantissa is only 9 bits in width. Half precision 1 uses a base-10 exponent
representation, and half precision 2 uses a base-2 exponent representation. The base-10
representation has a larger range with less accuracy, while the base-2 representation has a
smaller range with greater precision. The storage format of these two data representations is
shown below.

Mantissa Exponent
Byte 1 Byte 0

15 7 6 0

The mantissa is formed by the most significant 9 bits with a range of ±255. The exponent is
located in the least significant 7 bits of the 16-bit word and has a range of ±63.

VIDF Field Definitions 27 April 21, 2014

The half precision 3 floating point data (d_type 6) is stored as a 16-bit integer with 9 bits
for the mantissa and 7 bits for the exponent. The exponent uses a base-2 representation and has
the same dynamic range and accuracy as the half precision 2 floating point data. The difference
between the two is in the storage format. The storage format for half precision 3 is shown below.

Signs Exponent Mantissa

Byte 1 Byte 0
15 14 13 8 7 0

The mantissa is formed by the least significant 8 bits and a range of ±255. The sign of the
mantissa is represented in bit 14. The exponent is located in bits 8-13 and has a range of ±63.
Bit 15 represents the exponent sign.

There are three error conditions that are recognized by the floating point conversions and
are indicated in the 0 state of the integer representation (0 mantissa magnitude, 0 exponent
magnitude). The four possible zero states are shown below together with the conditions that they
represent and the handling by the IDFS data acquisition routines.

0 STATE FLOAT: MANTISSA AND EXPONENT MAGNITUDES = 0

MANTISSA
SIGN

EXPONENT
SIGN

CONDITION GENERIC ACQUISITION
RETURN VALUE

+ + valid data 0.0
+ - not a number 0.0
- + positive infinity largest positive value
- - negative infinity largest negative value

4.5.6 tdw_len

This field is an array of sen elements which gives the bit lengths associated with data of
each sensor as it is stored in the IDFS data record. Data stored under d_type 0 or 1 can have any
bit lengths up to 32 bits. Data stored under d_type 2 through 6 must have the bit length
indicated under the d_type definition for them.

In the IDFS data record, the data corresponding to each sensor can be stored with
different bit lengths, however, physically the data is stored in 1, 2, 4, 8, 16, or 32 bit lengths.
Note that the 64-bit length (double precision, floating point) is not supported yet. There is a
single base data length used for all data (sensor and calibration) within an IDFS data file. The
base word length is defined by rounding up the largest defined sensor tdw_len value and
calibration cal_wlen value to one of the "physical" lengths defined above.

4.5.7 sen_status

An array of sen elements which gives the status of each sensor. There are three defined
states:

0 - sensor is inoperative and any data returned should be ignored
1 - sensor is operating nominally
3 - sensor is operating erratically and data may be questionable

VIDF Field Definitions 28 April 21, 2014

Note that the IDFS data access software does not use the information in the sen_status
field at this time.

4.5.8 Example SENSOR Information Entry

Shown below is an example of the VIDF sensor information entries for a fixed-formatted
VIDF file for a virtual instrument containing three scalar sensors. Note that these entries are not
contiguous in the VIDF, except for the last three (d_type, tdw_len, sen_status). The non-
contiguous entries are separated with lines in the example below.

b 2 /* smp_id */
s 3 /* sen */
s 1 /* swp_len */
m 3 1 /* sen_name */
t Potential Calculation Method /* 00000 */
t Average Spacecraft Potential /* 00001 */
t Variance /* 00002 */
m 3 3 /* d_type */
b 0 0 0 /* 0000 - 0002 */
m 3 3 /* tdw_len */
b 4 8 8 /* 0000 - 0002 */
m 3 3 /* sen_status */
b 1 1 1 /* 0000 - 0002 */

In the above example (tdw_len), the base data length will be 8 bits, and thus, the data for

sensor 0 should be written in the data file as an 8-bit quantity where the 4 most significant bits
will be ignored by the IDFS data access software.

The same example for a token-tagged VIDF file is as follows. The non-contiguous

entries are separated with lines in the example below.

int smp_id = 2; /* smp_id */
int n_sensors = 3; /* sen */
int swp_len = 1; /* swp_len */
struct Sensor0 {
 string name = “Potential Calculation Method”; /* name */
 int d_type = 0; /* d_type */
 int status = 1; /* status */
 int tdw_len = 4; /* tdw_len */
 int time_offset = 0; /* time_offset */
};
struct Sensor1 {
 string name = “Average Spacecraft Potential”; /* name */
 int d_type = 0; /* d_type */
 int status = 1; /* status */
 int tdw_len = 8; /* tdw_len */
 int time_offset = 0; /* time_offset */

VIDF Field Definitions 29 April 21, 2014

};
struct Sensor2 {
 string name = “Variance”; /* name */
 int d_type = 0; /* d_type */
 int status = 1; /* status */
 int tdw_len = 8; /* tdw_len */
 int time_offset = 0; /* time_offset */
};

Note that for a token-tagged VIDF file, information that is defined per sensor is grouped

into a Sensor block structure. There are 5 elements within the Sensor block structure, four of
which have been defined in this section and are identified by bold-faced text in the comment
string. The last element (time_offset) is defined in section 4.6.3.

4.6 DATA TIMING Information

General timing information within the IDFS is defined through a set of three fields in the
VIDF coupled with active timing information in the IDFS header and data files. These three
VIDF fields, which are described below, are not contiguous within the VIDF.

4.6.1 sen_mode

This field defines how time advances within a sensor set. A sensor set is a 2D matrix of
data in which each column holds data from a single vector or scalar sensor. Within a sensor set,
time can advance either across the rows or down the columns. In addition, time can advance
sequentially, that is element by element, or in parallel, all elements within a row or column
advancing at the same time. For a given virtual instrument, time can advance in one prescribed
manner.

The recognized values for the sen_mode field together with a brief description of each
are given in the table below.

SEN_MODE DEFINITIONS
SEN_MODE

VALUE
TIME ADVANCES

IN ROW
TIME ADVANCES

IN COLUMN
TIME

ADVANCES
0 sequential sequential down column
1 sequential parallel down column
2 parallel sequential down column
3 parallel parallel down column
4 sequential sequential across row
5 sequential parallel across row
6 parallel sequential across row
7 parallel parallel across row

VIDF Field Definitions 30 April 21, 2014

Note that several of the definitions in the above table are redundant. As an example, if
the data in both the row and column are taken in parallel then as far as the timing goes, it doesn't
matter whether time is advancing across the rows (sen_mode = 7) or down the columns
(sen_mode = 3).

The usage of this field is illustrated through several examples. To begin, the table below
illustrates the generic picture of a sensor set which contains five sensors each with six data
samples. This sensor set will form the basis for the examples below.

EXAMPLE SENSOR SET
SENSORS →

DATA ↓
SEN 0 SEN 1 SEN 2 SEN 3 SEN 4

DATA 1
DATA 2
DATA 3
DATA 4
DATA 5
DATA 6

If the sensor set is defined to have a sen_mode of either 2 or 6, the timing runs as shown
below. Here, T1 through T6 are successive times.

EXAMPLE SENSOR SET (SEN_MODES 2 or 6)
SENSORS →

DATA ↓
SEN 0 SEN 1 SEN 2 SEN 3 SEN 4

DATA 1 T1 T1 T1 T1 T1
DATA 2 T2 T2 T2 T2 T2
DATA 3 T3 T3 T3 T3 T3
DATA 4 T4 T4 T4 T4 T4
DATA 5 T5 T5 T5 T5 T5
DATA 6 T6 T6 T6 T6 T6

In the above picture, the data for each sensor is taken at the same time, in parallel. Time
progresses down the columns of the sensor set, each row containing data taken at a successively
later time. Since the data is taken in parallel across the sensor set rows, it does not matter if time
advances down the column or across the row -- the same time for any given element will be
arrived at in each case. Thus, the redundancy between sen_mode 2 and 6.

The next example shows a sensor set defined to have a sen_mode of either 1 or 5. Again,
T1 through T5 are successive times.

VIDF Field Definitions 31 April 21, 2014

EXAMPLE SENSOR SET (SEN_MODES 1 or 5)
SENSORS →

DATA ↓
SEN 0 SEN 1 SEN 2 SEN 3 SEN 4

DATA 1 T1 T2 T3 T4 T5
DATA 2 T1 T2 T3 T4 T5
DATA 3 T1 T2 T3 T4 T5
DATA 4 T1 T2 T3 T4 T5
DATA 5 T1 T2 T3 T4 T5
DATA 6 T1 T2 T3 T4 T5

Now all measurements within a sensor column are taken at the same time and time

advances from column to column, that is from sensor to sensor. These modes (sen_mode 1 and
sen_mode 5) should not be used for scalar sensors, which generally make sequential point
measurements.

The last two examples below show successive times running from T1 to T30 (sen_mode
0 and 4).

EXAMPLE SENSOR SET (SEN_MODE 0)
SENSORS →

DATA ↓
SEN 0 SEN 1 SEN 2 SEN 3 SEN 4

DATA 1 T1 T7 T13 T19 T25
DATA 2 T2 T8 T14 T20 T26
DATA 3 T3 T9 T15 T21 T27
DATA 4 T4 T10 T16 T22 T28
DATA 5 T5 T11 T17 T23 T29
DATA 6 T6 T12 T18 T24 T30

When sen_mode is set to 0, the sensors make measurements one after the other where

time advances down the columns. Data is acquired column by column such that the data for
sensor 0 is acquired totally before the data for sensor 1 is acquired, etc.

EXAMPLE SENSOR SET (SEN_MODE 4)
SENSORS →

DATA ↓
SEN 0 SEN 1 SEN 2 SEN 3 SEN 4

DATA 1 T1 T2 T3 T4 T5
DATA 2 T6 T7 T8 T9 T10
DATA 3 T11 T12 T13 T14 T15
DATA 4 T16 T17 T18 T19 T20
DATA 5 T21 T22 T23 T24 T25
DATA 6 T26 T27 T28 T29 T30

When sen_mode is set to 4, the sensors make measurements one after the other in time

across the sensor set rows. Data is acquired sensor by sensor as time advances across the rows.

VIDF Field Definitions 32 April 21, 2014

4.6.2 da_method
This field describes the format of how time changes down the column of a sensor set

when dealing with a vector sensor. It has no meaning when dealing with scalar sensors or when
dealing with vector sensors if sen_mode indicates that the column timing is parallel (sen_mode
1, 3, 5, or 7). In these cases da_method should be set to 0.

Before going over this section it is beneficial to review the definitions of data_accum,
data_lat, n_sample, and scan_index fields which are given in the section on the IDFS header
record.

For a vector instrument, there are four recognized types of data acquisition which are
described below. The value introducing each definition is the appropriate da_method value to
use in the VIDF.

0 - Each element in the vector is acquired within the time data_accum and the time
between successive elements is given by

Δt = data_accum + data_lat

Each element in the vector is assumed to be acquired sequentially, one after the other
despite possible discontinuities in the scan_index values. The time contained within
a complete vector is then

ΔT = n_sample ∗ Δt

As an example: A vector sensor has 10 elements whose scan_index values are 1, 5,
9, ... 37. The beginning acquisition of first element (step 1) is found to be T0. The
beginning time of the second element (step 5) is then T0 + Δt, the beginning time of
the third element (step 9) is T0 + 2Δt and so on. The time contained within the
complete vector is 10 ∗ Δt.

1 - Each element in the vector is acquired within the time data_accum and the time

between successive elements is given by

Δt = data_accum + data_lat

The difference between this and the above situation is that it is assumed that all
possible sweep steps are acquired but only a subset have been returned. The steps not
returned then form an effective dead time or additional data latency between the
returned steps. The time contained within a complete vector is then

ΔT = swp_len * Δt

Using the same example as above: A vector sensor has 10 elements returned out of
64 possible (swp_len). The scan_index values are 1, 5, 9, ... 37. The beginning time
of the sweep is found to be T0. The beginning acquisition time of first element (step

VIDF Field Definitions 33 April 21, 2014

1) is then T0 + Δt, the beginning time of the second element (step 5) is T0 + 5Δt, the
beginning time of the third element (step 9) is T0 + 9Δt and so on. The time
contained within the complete vector is 64 * Δt.

2 - Each element in the vector is acquired within the time data_accum and the time

between successive elements is given by
Δt = data_accum + data_lat

This situation is very similar to the situation defined for da_method of 1, with one
distinction. In this situation it is assumed that all of the possible sweep steps are
acquired, but only a subset have been returned. The subset sampled is contained
between the first and last steps defined within the scan_index array. Again, the steps
not returned in the data form an effective dead time or additional data latency
between the returned steps. The time contained within a complete vector is then

ΔT = Δt ∗ NSTEPS

where

NSTEPS = scan_index[n_sample-1] - scan_index[0] + 1

Returning to the same example as above: A vector sensor has 10 elements returned
out of 64 possible (swp_len). The scan_index values are 1, 5, 9, ... 37. The
beginning acquisition time of first element (step 1) is found to be T0. The beginning
time of the second element (step 5) is then T0 + 4Δt (5-1 = 4), the beginning time of
the third element (step 9) is T0 + 8Δt (9-1 = 8), and so on. The time contained within
the complete vector is 37 ∗ Δt (37 - 1 + 1 = 37).

3 - This definition of da_method is restricted to vector sensors whose elements are

evenly spaced (SKIP) within the total number of scan steps available. This is
equivalent to requiring that each element in the scan_index be able to be determined
by an algorithm of the form:

scan_index[J] = J * SKIP + scan_index[0]

Under this definition each element in the vector is acquired within the time
data_accum ∗ SKIP and the time between successive elements is given by

Δt = SKIP ∗ data_accum + data_lat

The time contained within a complete vector is then

ΔT = n_sample ∗ Δt

This is identical to da_method of 0 with a different definition of Δt. This defines the
situation where the accumulation of a single element is held for the length of time

VIDF Field Definitions 34 April 21, 2014

between its step and the next returned step. This poses a problem for the last step,
where there is no "ending" step from which to determine its duration. The last step
by definition is assumed to be acquired in data_accum. This can be defeated by
defining a dummy ending element in the vector whose scan_index value is used to
define the duration of the true ending value and whose data value is set to the current
fill value.

As an example: A vector sensor has 10 elements returned out of 64 possible
(swp_len). The scan_index values are 1, 5, 9, ... 37. The beginning acquisition time
of the first element (step 1) is found to be T0 and

Δt = 4 ∗ data_accum + data_lat

The beginning time of the second element (step 5) is then T0 + Δt, the beginning time
of the third element (step 9) is T0 + 2Δt and so on. The time contained within the
complete vector is 10 ∗ Δt.

4.6.3 time_off
This is an array of sen elements which holds a set of offsets to be applied to the derived

time for any given measurement for each sensor. The offsets are given in milliseconds and can
be positive or negative.

These offsets allow for small corrections to the sensor timing which may arise from
internal buffering of data in an instrument or any other effects. A specific example of the usage
of this field is the following: A set of voltages and currents are returned from an experiment and
would like to be kept as a set of data in a single IDFS. They are, however, taken at slightly
different times within a block of transmitted data, their time of acquisition actually being
determined by their position in the data stream. The data can be kept together by declaring all
sensors within the IDFS to take their data in parallel at times corresponding to the beginning of
the data blocks and then using the time_off field to correctly offset this time to the actual
acquisition times.

4.6.4 Example DATA TIMING Information Entry

Shown below is an example of the VIDF timing fields for a fixed-formatted VIDF file for
a virtual instrument containing three sensors. These entries are not contiguous within the VIDF,
so they are separated with lines in the example below.

b 2 /* sen_mode */
b 0 /* da_method */
m 3 3 /* time_off */
l 10 0 -10 /* 000 - 002 */

This virtual instrument has a sen_mode of 2 which means the data for all sensors are acquired at
the same time (in parallel). However, the time_off values indicate that the first sensor's data is
actually acquired 10 msecs. after the beginning data block time, the second sensor's data is

VIDF Field Definitions 35 April 21, 2014

acquired at the beginning data block time, and the third sensor's data is actually acquired 10
msecs. before the beginning data block time.

The same example for a token-tagged VIDF file is as follows. The non-contiguous
entries are separated with lines in the example below.

int sen_mode = 2; /* sen_mode */
int da_method = 0; /* da_method */
struct Sensor0 {
 string name = “Potential Calculation Method”; /* name */
 int d_type = 0; /* d_type */
 int status = 1; /* status */
 int tdw_len = 4; /* tdw_len */
 int time_offset = 10; /* time_offset */
};
struct Sensor1 {
 string name = “Average Spacecraft Potential”; /* name */
 int d_type = 0; /* d_type */
 int status = 1; /* status */
 int tdw_len = 8; /* tdw_len */
 int time_offset = 0; /* time_offset */
};
struct Sensor2 {
 string name = “Variance”; /* name */
 int d_type = 0; /* d_type */
 int status = 1; /* status */
 int tdw_len = 8; /* tdw_len */
 int time_offset = -10; /* time_offset */
};

Note that for a token-tagged VIDF file, information that is defined per sensor is grouped

into a Sensor block structure. There are 5 elements within the Sensor block structure, one of
which has been defined in this section and is identified by bold-faced text in the comment string.
The other four elements are individually defined in section 4.5.

4.7 QUALITY Definitions

Two fields in the VIDF are used to define the values of the quality flags found in the
IDFS header record. These fields are not contiguous within the VIDF and are described below.

4.7.1 n_qual

The number of data quality definitions within the VIDF field qual_name.

VIDF Field Definitions 36 April 21, 2014

4.7.2 qual_name
An array of n_qual lines of text each a maximum of 79 characters in length. Each line of

text describes one of the possible numerical quality definitions which are given in the IDFS
header record for this particular VIDF. The order of the definitions in the array are assumed to
correspond to the numerical values (starting at 0) of the quality flags they define. For example, a
numerical value of 0 corresponds to the first definition in the array, a numerical value of 1
corresponds to the second definition, and so on.

4.7.3 Example QUALITY Definintions Entry

Shown below is an example entry of the two fields which comprise the VIDF quality
block for a fixed-formatted VIDF file. These entries are not contiguous in the VIDF, so they are
separated with a line in the example below.

b 3 /* n_qual */
m 3 1 /* qual_name */
t No Fill Data In Sensor Set /* 00000 */
t Some Fill Data In Sensor Set /* 00001 */
t Questionable Data In Sensor Set /* 00002 */

The same example for a token-tagged VIDF file is as follows. The non-contiguous

entries are separated with lines in the example below.

int n_qual = 3; /* n_qual */
string qual_names = “No Fill Data In Sensor Set”; /* name */
string qual_names = “Some Fill Data In Sensor Set”; /* name */
string qual_names = “Questionable Data In Sensor Set”; /* name */

It should be noted that there is only one assumed definition for a given quality flag within an
IDFS. A quality flag is assigned to each sensor within a given sensor set, so if sensors need to
have different quality definitions, they should be given unique values.

4.8 CALIBRATION SET Information

The descriptions of the calibration sets which may be attached to each of the sensors are
contained in five fields within the VIDF. The five calibration fields are described below.

4.8.1 cal_sets

The total number of calibration sets which are associated with the virtual instrument.

4.8.2 cal_names
An array of cal_sets text fields each a maximum of 79 characters in length. Each field is

a description of one of the defined calibration sets for this virtual instrument. The order of the
definitions in the array is assumed to correspond to the order in which the data for the calibration
sets are written to the IDFS data file.

VIDF Field Definitions 37 April 21, 2014

4.8.3 cal_use
An array of cal_sets elements which define the number of successive sensor or scan

elements (according to cal_target) to which each calibration value is to be applied. While it is
not necessary for a calibration set to have one value for each sensor measurement defined in a
sensor set, it is necessary that each measurement be linked to a calibration set value. It is the
function of cal_use to describe this linkage.

For vector sensors, cal_use can have any value from 0 to the sensor vector length
(swp_len), while for scalar sensors cal_use must be either 0 or 1. The 0 cal_use value is
reserved and indicates that a single calibration value is present which is to be applied to all
sensor measurements in the sensor set.

The best method to illustrate the use of this field is through specific examples.

4.8.3.1 cal_use Example-1
A vector sensor of length 19 has a calibration set associated with it where cal_use is set to

3. This means that each element in the calibration data will apply to 3 elements in the sensor
data. The first calibration value will apply to the first 3 sensor elements, the next calibration
value to the next 3, and so on. Since there are 19 elements in the sensor vector, there must be 7
calibration values where the last calibration value is used only for the last sensor element. If
cal_use is set to 0, then there would be a single calibration value to be applied to all 19 sensor
elements.

4.8.3.2 cal_use Example-2

A scalar sensor has 12 successive measurements in each sensor set and a calibration set
associated with it where cal_use is set to 0. There is then only one calibration value which is
applied to each of the 12 sensor measurements. If cal_use is set to 1 in this example, then there
would be 12 calibration values, one for each measurement.

4.8.4 cal_wlen

This field is an array of cal_sets elements which define the bit lengths associated with the
data of each calibration set. This is not the base word length used for all data within the data file,
but the number of valid bits defined for each calibration set (similar to tdw_len). Refer to the
description of tdw_len in section 4.5.6.

4.8.5 cal_target

An array of cal_sets elements which define the target data to which the calibration data
applies. The defined values are shown in the table below.

CAL_TARGET DEFINITIONS

CAL_TARGET DEFINITION
0 Sensor data
1 Scanning data

VIDF Field Definitions 38 April 21, 2014

Scalar sensors can only have a cal_target value of 0 by definition. Note that in the IDFS data
record, calibration data must be written with calibration sets targeted to the scan data preceding
those that apply to the sensor data. This should be manifested in the cal_target entries.

4.8.6 Example CALIBRATION SET Information Entries

Shown below are two examples of the VIDF calibration data block entries. The five
fields are disjointed within the VIDF with only the final three fields being contiguous. Note that
the non-contiguous VIDF entries are separated with lines.

If there are no calibration data associated with this IDFS, the VIDF calibration entries for
a fixed-formatted VIDF file would be as follows:

b 0 /* cal_sets */
n /* cal_names */
n /* cal_use */
n /* cal_wlen */
n /* cal_target */

The same example for a token-tagged VIDF file is as follows:

int n_cal_sets = 0; /* cal_sets */

The following example shows calibration entries for a virtual instrument that returns
vector data. There are 7 defined calibration sets where the first two sets are to be applied to the
scan data (cal_target = 1), and the last five sets are to be applied to the sensor data (cal_target =
0). There is a single value for each calibration set (cal_use = 0), where the first two calibration
values are to be applied to all elements of the scan data, and the last five values are to be applied
to all elements of the sensor data. The first three and the seventh calibration values have bit
lengths of 16, and the fourth, fifth, and sixth values have bit lengths of 1, 2, and 3, respectively
(cal_wlen). However, all values are stored in 16-bit quantities as long as the maximum tdw_len
value does not exceed 16.

b 7 /* cal_sets */
m 7 1 /* cal_names */
t Scanline Number /* 00000 */
t Scan Offset /* 00001 */
t Gain Code /* 00002 */
t Gain Format (Log/Linear) /* 00003 */
t Gain Sub Mode /* 00004 */
t Photomultipier Calibration /* 00005 */
t T-Channel Gain /* 00006 */
m 7 7 /* cal_use */
s 0 0 0 0 0 0 0 /* 0000-0006 */
m 7 7 /* cal_wlen */
b 16 16 16 1 2 3 16 /* 0000-0006 */
m 7 7 /* cal_target */
b 1 1 0 0 0 0 0 /* 0000-0006 */

VIDF Field Definitions 39 April 21, 2014

The same example for a token-tagged VIDF file is as follows:

int n_cal_sets = 7; /* cal_sets */
struct CalSet0 {
 string name = “Scanline Number”; /* name */
 int use = 0; /* use */
 int word_len = 16; /* word length */
 int target = 1; /* target */
};
struct CalSet1 {
 string name = “Scan Offset”; /* name */
 int use = 0; /* use */
 int word_len = 16; /* word length */
 int target = 1; /* target */
};
struct CalSet2 {
 string name = “Gain Code”; /* name */
 int use = 0; /* use */
 int word_len = 16; /* word length */
 int target = 0; /* target */
};
struct CalSet3 {
 string name = “Gain Format (Log/Linear)”; /* name */
 int use = 0; /* use */
 int word_len = 1; /* word length */
 int target = 0; /* target */
};
struct CalSet4 {
 string name = “Gain Sub Mode”; /* name */
 int use = 0; /* use */
 int word_len = 2; /* word length */
 int target = 0; /* target */
};
struct CalSet5 {
 string name = “Photomultipier Calibration”; /* name */
 int use = 0; /* use */
 int word_len = 3; /* word length */
 int target = 0; /* target */
};
struct CalSet6 {
 string name = “T-Channel Gain”; /* name */
 int use = 0; /* use */
 int word_len = 16; /* word length */
 int target = 0; /* target */
};

VIDF Field Definitions 40 April 21, 2014

Note that for a token-tagged VIDF file, information that is defined per calibration set is
grouped into a CalSet block structure. There are 4 elements within the CalSet block structure. If
no calibration sets are defined (n_cal_sets = 0), there are no CalSet structures contained within
the token-tagged VIDF file.

4.9 INSTRUMENT STATUS (MODE) Information

The descriptions of the status or mode bytes which occur in the IDFS header records are
contained within three fields of the VIDF. The three fields are described below.

4.9.1 status

The number of status or mode bytes contained in the header record field mode_index.
Up to 255 modes can be defined for a given virtual instrument. This value should be identical to
the header record field i_mode.

4.9.2 status_name

An array of status text fields each a maximum of 79 characters in length. Each field is a
description of one of the defined status bytes for this virtual instrument. The order of the
definitions in the array is assumed to correspond to the order in which the status bytes are written
in the IDFS header file mode_index array.

4.9.3 states

An array of status elements each of which gives the number of states for its
corresponding status. These numbers define the actual values of the modes (status bytes) as
written to the Header File (mode_index[i_mode]) to be from 0 to states[i_mode]-1.

4.9.4 Example INSTRUMENT STATUS (MODE) Information Entries

Shown below are two examples of the VIDF status information entries. The three fields
are disjointed within the VIDF with only the final two fields (status_names and states) being
contiguous. The non-contiguous entries are separated with lines.

The first example shows no status data defined in this fixed-formatted VIDF file.

b 0 /* status */
n /* status_name */
n /* states */

The same example for a token-tagged VIDF file is as follows:

int n_status = 0; /* status */

The second fixed-formatted VIDF example shows an IDFS which has two statuses (or
modes) defined. The first status ("Current Gain Range") has 4 states (0-3), and the second status
("Voltage Gain Range") has 2 states (0-1). States can further be defined in ASCII tables if so

VIDF Field Definitions 41 April 21, 2014

desired (e.g., the "Voltage Gain Range" could have ASCII table entries defining state 0 to be
"Low" and state 1 to be "High").

b 2 /* Status */
m 2 1 /* status_names */
t Current Gain Range /* 00000 */
t Voltage Gain Range /* 00001 */
m 2 2 /* States */
s 4 2 /* 00000-00001 */

The same example for a token-tagged VIDF file is as follows:

int n_status = 2; /* status */
struct Status0 {
 string name = “Current Gain Range”; /* name */
 int state = 4; /* state */
};
struct Status1 {
 string name = “Voltage Gain Range”; /* name */
 int state = 2; /* state */
};

Note that for a token-tagged VIDF file, information that is defined per status is grouped

into a Status block structure. There are 2 elements within the Status block structure. If no status
bytes are defined (n_status = 0), there are no Status structures contained within the token-tagged
VIDF file.

4.10 PITCH ANGLE Information

The description of how to form pitch angles for each sensor defined is contained within
eleven fields of the VIDF. The eleven fields are disjointed within the VIDF with the first field
separated from the last ten contiguous fields.

The pitch angle is determined by the dot product of the outward directed unit normal to
the detector aperture with the local magnetic field as:










 ⋅−
= −

BN
BN1cosα

where α is the pitch angle and N is the unit normal. The magnetic field, B, is assumed to be
given in the same coordinate system as the unit normal.

The eleven pitch angle fields are described below.

VIDF Field Definitions 42 April 21, 2014

4.10.1 pa_defined
This field indicates whether pitch angle information has been placed within the VIDF. If

not, then the next ten fields are not used; otherwise, the next ten fields are considered active and
it is assumed that the unit normals to the detector apertures have been defined in the
CONSTANTS section of the VIDF, identified as having const_id values of 6, 7, and 8.

4.10.2 pa_format

This integer field is used to indicate which algorithm is to be used in computing the pitch
angle. Currently, the only “algorithm” defined is the one shown above and therefore, the value
for this field should be set to 1. However, if the value of this field is set to 0, the pitch angle
computation is overridden and the pitch angle values that are returned by the IDFS data access
software are the values that are defined in the CONSTANTS section of the VIDF, identified as
having a const_id value of 11.

4.10.3 pa_project

This is the ASCII project acronym under which the magnetic field elements to be used in
the pitch angle computation are found. It must match the magnetic field IDFS project acronym
and is limited to 20 characters in length. If the pa_format value indicates that the pitch angle
computation is to be overridden with pre-defined constants, this field should be set to indicate
that it is non-active.

4.10.4 pa_mission

This is the ASCII mission acronym under which the magnetic field elements to be used in
the pitch angle computation are found. It must match the magnetic field IDFS mission acronym
and is limited to 20 characters in length. If the pa_format value indicates that the pitch angle
computation is to be overridden with pre-defined constants, this field should be set to indicate
that it is non-active.

4.10.5 pa_exper

This is the ASCII experiment acronym under which the magnetic field elements to be
used in the pitch angle computation are found. It must match the magnetic field IDFS
experiment acronym and is limited to 20 characters in length. If the pa_format value indicates
that the pitch angle computation is to be overridden with pre-defined constants, this field should
be set to indicate that it is non-active.

4.10.6 pa_inst

This is the ASCII instrument acronym under which the magnetic field elements to be
used in the pitch angle computation are found. It must match the magnetic field IDFS instrument
acronym and is limited to 20 characters in length. If the pa_format value indicates that the pitch
angle computation is to be overridden with pre-defined constants, this field should be set to
indicate that it is non-active.

VIDF Field Definitions 43 April 21, 2014

4.10.7 pa_vinst
This is the ASCII virtual instrument acronym in which the magnetic field elements to be

used in the pitch angle computation are found. It must match the magnetic field IDFS virtual
instrument acronym and is limited to 20 characters in length. If the pa_format value indicates
that the pitch angle computation is to be overridden with pre-defined constants, this field should
be set to indicate that it is non-active.

4.10.8 pa_b1b2b3

An array of length three giving the sensor numbers of the B1, B2, and B3 components of
the magnetic field as they are defined in the magnetic field IDFS. The notation B1, B2 and B3
refer to Axis A, Axis B and Axis C components, respectively (refer to the diagram provided in
section 1.7). If the pa_format value indicates that the pitch angle computation is to be
overridden with pre-defined constants, this field should be set to indicate that it is non-active.

4.10.9 pa_apps

The number of tables which must be applied to the magnetic field components to bring
them into the appropriate units necessary for the pitch angle computation. If the pa_format
value indicates that the pitch angle computation is to be overridden with pre-defined constants,
this field should be set to indicate that it is non-active.

4.10.10 pa_tbls

An array of pa_apps which gives the table numbers which will need to be applied to the
magnetic field components. Note that these table numbers are obtained from the VIDF
pertaining to the virtual instrument in which the magnetic field components are defined. If the
pa_format value indicates that the pitch angle computation is to be overridden with pre-defined
constants, this field should be set to indicate that it is non-active

4.10.11 pa_ops

An array of pa_apps which gives the table operations which will need to be applied to
each of the tables specified in pa_tbls (see Appendix A of the PIDF documentation
http://www.idfs.org/Editors/pidfdoc.html for valid table operation entries). If the pa_format
value indicates that the pitch angle computation is to be overridden with pre-defined constants,
this field should be set to indicate that it is non-active.

4.10.12 Example PITCH ANGLE Information Entries

Shown below are three examples of the VIDF pitch angle information entries. The
entries that are not contiguous within the VIDF are separated with lines.

The first example shows VIDF entries when no pitch angle computation is defined for a
fixed-formatted VIDF file.

b 0 /* pa_defined */
n /* pa_format */
n /* pa_project */

VIDF Field Definitions 44 April 21, 2014

n /* pa_mission */
n /* pa_exper */
n /* pa_inst */
n /* pa_vinst */
n /* pa_b1b2b3 */
n /* pa_apps */
n /* pa_tbls */
n /* pa_ops */

 For a token-tagged VIDF file, pitch angle computations are specified by the presence of a
PitchAngle block structure. If this structure is not present, no pitch angle computations are
defined for the IDFS in question.

The second example shows pitch angle information defined, making use of the dot

product algorithm. The pitch angle computations are based on the magnetic field data contained
in the TSS / TSS-1 / TEMAG / TEMAG / TMMO IDFS. The TMMO IDFS has the B1, B2, and
B3 values stored in sensors 0, 1, and 2, respectively. Only one table is to be applied to convert
the stored B1, B2, and B3 values to the same coordinate system as the unit normal.

b 1 /* pa_defined */
s 1 /* pa_format */
T TSS /* pa_project */
T TSS-1 /* pa_mission */
T TEMAG /* pa_exper */
T TEMAG /* pa_inst */
T TMMO /* pa_vinst */
m 3 3 /* pa_b1b2b3 */
s 0 1 2 /* 0000-0002 */
s 1 /* pa_apps */
m 1 1 /* pa_tbls */
s 0 /* 00000 */
m 1 1 /* pa_ops */
s 0 /* 00000 */

The same example for a token-tagged VIDF file is as follows:

struct PitchAngle {
 int format = 1; /* pa_format */
 string project = “TSS”; /* pa_project */
 string mission = “TSS-1”; /* pa_mission */
 string experiment = “TEMAG”; /* pa_exper */
 string instrument = “TEMAG”; /* pa_inst */
 string vinstrument = “TMMO”; /* pa_vinst */
 int b1 = 0; /* b1 */
 int b2 = 1; /* b2 */
 int b3 = 2; /* b3 */

VIDF Field Definitions 45 April 21, 2014

 int num_tbls = 1; /* num_tbls */
 int tbls = 0; /* tbl 0 */
 int opers = 0; /* oper 0 */
};

The last example shows VIDF entries when pitch angle values are to be returned, but the

values are defined as constants for a fixed-formatted VIDF file.

b 1 /* pa_defined */
s 0 /* pa_format */
n /* pa_project */
n /* pa_mission */
n /* pa_exper */
n /* pa_inst */
n /* pa_vinst */
n /* pa_b1b2b3 */
n /* pa_apps */
n /* pa_tbls */
n /* pa_ops */

The same example for a token-tagged VIDF file is as follows:

struct PitchAngle {
 int format = 0; /* pa_format */
};

Note that while the PitchAngle block structure is defined, it does not contain the

information that is pertinent for dot product pitch angle computations. The user is reminded that
when this format is selected, the pitch angle constants (const_id = 11) must also be defined in
the VIDF (refer to section 4.15).

4.11 DATA RECORD Information

The VIDF contains two fields which pass information concerning the IDFS data record to
the IDFS data access software. These fields are described below.

4.11.1 max_nss

This field sets the maximum dimension of the hdr_off array in any given data record, and
thus, must be greater than 0. In some cases, max_nss defines the maximum number of sensor
sets which can be contained within a given data record. Each sensor set can have a unique offset
into the IDFS header file and this offset is specified in the hdr_off array in the data record.
However, in some cases, all sensor sets defined within an IDFS data record may utilize the same
header record. If this is always true, the creator of the IDFS data set may choose to set the value
of nss in the data records to indicate this scenario and should set the value of max_nss to 1 since

VIDF Field Definitions 46 April 21, 2014

only one header offset value will be written in the hdr_off array. For more information, see the
definition of nss in the IDFS data record section.

4.11.2 data_len

This field gives the size (in bytes) of the IDFS data records for this virtual instrument.
IDFS data records are fixed length, so all data records for this virtual instrument must be
data_len bytes.

4.11.3 Example DATA RECORD Information Entry

Shown below is an example of the fixed-formatted VIDF data information field entries
for a virtual instrument which has a maximum of 12 header offsets within a data record and a
data record length of 1268 bytes.

s 12 /* max_nss */
l 1268 /* data_len */

The same example for a token-tagged VIDF file is as follows:

int max_nss = 12; /* max_nss */
int data_len = 1268; /* data_len */

4.12 FILL Information

A single fill data value for the IDFS data can be defined within the VIDF through the
fields fill_flg and fill. The two fields are described below.

4.12.1 fill_flg

Indicates whether or not a fill value has been defined. A value of 0 indicates that no fill
value is defined while a value of 1 indicates that the fill field has a valid fill value.

4.12.2 fill

When indicated by fill_flg, this field contains the designated fill data value used in the
IDFS data records to indicate missing or fill data.

4.12.3 Example FILL Information Entries

Shown below are two examples of the VIDF fill information entries.

This example shows the fixed-formatted VIDF entries when a fill value is present.

b 1 /* fill_flg */
l 255 /* fill */

VIDF Field Definitions 47 April 21, 2014

The same example for a token-tagged VIDF file is as follows:

int fill_flag = 1; /* fill_flg */
int fill = 255; /* fill */

This example shows the fixed-formatted VIDF entries when no fill value is given.

b 0 /* fill_flg */
n /* fill */

The same example for a token-tagged VIDF file is as follows:

int fill_flag = 0; /* fill_flg */

4.13 BLOCK Information

There are two major repetitive blocks of fields within the VIDF file. The first describes
the included tables and the second describes the included constants. The number of each
contained in the VIDF are indicated through two fields described below.

4.13.1 num_tbl

This field defines the number of tables which are contained within the VIDF.

4.13.2 num_consts
This field defines the number of constants which are contained within the VIDF.

4.13.3 Example BLOCK Information Entry
Shown below is an example of the block information fields for a fixed-formatted VIDF

which has three tables and two constants included within it.

b 3 /* num_tbls */
b 2 /* num_consts */

The same example for a token-tagged VIDF file is as follows:

int n_tbls = 3; /* num_tbls */
int n_consts = 2; /* num_consts */

4.14 TABLE BLOCK

A VIDF table block consists of 15 fields which describe the table, its function, and its
dependencies. Each table definition can contain a mixture of look-up tables and sets of
polynomial coefficients. A different table per sensor can be defined within a given table block
provided that all have a common functional dependence. In addition, each sensor may switch

VIDF Field Definitions 48 April 21, 2014

between defined tables based on the state of a defined status byte. This is done through the use
of the critical value fields.

Most of the table block fields simply give direction to the IDFS data access software on
how to acquire the table entries for each sensor defined within the VIDF. If the VIDF entry
num_tbls is zero, there are no TABLE BLOCK definitions within the VIDF. If it is non-zero,
there are num_tbls TABLE BLOCK definitions within the VIDF. The block of table fields are
described below.

4.14.1 tbl_sca_sz

This field determines the number of scaling parameters defined in the table block scaling
array (tbl_sca) and how they are to be applied to the actual table values (tbl). The absolute
value of this entry determines the number of elements in the tbl_sca array. There are three
formats to this entry.

> 0 The field specifies the total number of scaling values in the scaling array (tbl_sca)
of which there must be one scaling value for each table value present. In this case,
the two fields tbl_sca_sz and tbl_ele_sz must be identical.

= 0 There is no scaling array present and all table values are assumed to be scaled as

entered. This is used primarily when the table being defined is an ASCII look-up
table.

< 0 There is only one scaling coefficient per defined sensor or per status depending on

tbl_var. If tbl_var is 4 or 5, the scaling applies to the statuses (modes) defined;
otherwise, the scaling applies to the defined sensors. The scaling value for each
sensor or status applies to all the table elements defined for that sensor or status.

4.14.2 tbl_ele_sz

This field defines the number of elements in the table array tbl. For ASCII tables in a
fixed-formatted VIDF, there can be a maximum of 1000 entries in tbl.

4.14.3 tbl_type

This field indicates the type of table being defined. There are three general table
categories which are defined below.

0 - All the table entries are 4-byte integers. This is the most common table type
where the scaled values are used as look-up parameters or polynomial coefficients
in algorithms to convert the stored IDFS data to physical units.

1 - All the table entries are ASCII strings, each of which must be a maximum of 20

characters in length. They are stored in 21 byte fields where the last byte always
being a NULL (string terminator). The ASCII strings in the VIDF table entries
must be in quotes (e.g., "string") for the VIDF binary conversion program
(mk_idf) to work properly.

VIDF Field Definitions 49 April 21, 2014

2 - All the table entries are 4-byte integers as in definition 0. The difference is that
here there is one look-up table or set of polynomial coefficients per scan step.
This table type is only valid for VIDF's defining vector sensors (swp_len > 1).
This tbl_type value specifies to the IDFS data access software that swp_len look-
up tables or sets of polynomial coefficients must be accessed with each
corresponding to data associated with a single scan step. This is used in cases
where each step in a vector (scanning) sensor requires a unique expansion or
correction.

There is a restriction on the placement of tables in the VIDF based on tbl_type, that being, tables
with a tbl_type value of 1 must be placed after all other tables (i.e., ASCII tables must be
defined after all integer tables have been defined in the VIDF).

4.14.4 tbl_comnts

The number of comment lines within the table comment field (tbl_desc).

4.14.5 tbl_desc
This is the table comment field which has tbl_comnts number of lines of free-form text

where each line is a maximum of 79 characters in length. Comment lines are generally used to
give a brief description of the table contents and usage.

4.14.6 tbl_var

This field indicates the functional dependence of the table which is based on the data type
and whether the data is raw or processed. The recognized variable types are given in the table
below.

TBL_VAR DEFINITIONS
TBL_VAR DEFINITION

-N Table is a function of raw calibration set N - 1
0 Table is a function of raw sensor data
1 Table is a function of current processed data
2 Table is a function of raw scan step data
3 Table is a function of spacecraft potential data
4 Table is a function of raw mode data
5 Table is a function of processed mode data
7 Table is a function of background data

The table can be a function of processed data for sensor or status (mode) data types only.

For processed data dependencies, the table must be a polynomial expansion and not a look-up
table. If the table is a function of processed data, then the values are obtained by using the
current processed data buffer values as input to the polynomial expression given in the table.

If the table is a function of raw data, the value indicates which IDFS data values
(calibration, sensor, scan, or mode) are used either in the polynomial expansion of the table or as
offsets into the look-up table. The tbl_fmt VIDF entry determines whether the table is a set of
polynomial coefficients or look-up values.

VIDF Field Definitions 50 April 21, 2014

 If the table is a function of spacecraft potential or background data, the same rules as
processed data must be observed, as described above, since the spacecraft potential / background
data is returned by the IDFS data access software as a floating point value.

There is a restriction on the placement of tables in the VIDF based on tbl_var, that being,
that tables with tbl_var values of 4 or 5 (mode-dependent tables) must be placed after all other
integer tables with a tbl_type value of 0 or 2. Mode-dependent tables may be placed either
before or after ASCII tables.

4.14.7 tbl_expand

This field specifies to the IDFS data access software whether or not polynomial
coefficients should be expanded into look-up table format. The field definitions are shown
below.

TBL_EXPAND DEFINITIONS
TBL_EXPAND DEFINITION

0 Keep as polynomial coefficients and apply as such
1 Expand to look-up table format

This field is ignored if the sensor table entries for a given sensor are already in look-up

format (tbl_fmt = 0) or if the tbl_var indicates that the table is a function of processed data in
which case it cannot be used to index into a look-up table.

The creation of a look-up table is done under the assumption that it is much quicker to

use a precalculated value in an expression than to have to calculate the value each time it is used.
The decision of whether to expand a polynomial or not is based on many considerations. Three
of the more important are given here:

1. The polynomial must be a function of raw data. If not, it cannot be built into a look-

up table since there would be no way to index into it.

2. The size of the table which must be built is 2B where B is the bit length of the data of

which the polynomial is a function. If B is much larger than 10-12, the number of
elements needed to create the look-up table becomes large enough that it may not be
advantageous to compute so many values based both on time spent in creating the
table and the memory it will occupy.

3. If in most applications there will be less conversions than there are positions in the

look-up table, then it is faster to leave the polynomial unexpanded and do the
expansion on demand. More explicitly, an 8-bit data value which is returned once per
16 seconds will require over an hour of data to be processed before 256 conversions
will have to be made. If in general this data is analyzed in shorter periods of time, it
is more advantageous to leave the polynomial unexpanded than to expand it.

VIDF Field Definitions 51 April 21, 2014

4.14.8 crit_act_sz
This field gives the number of elements which are found in the critical action array

(crit_action) in the VIDF. If there is not a critical action block associated with the table, then
this value is set to 0 and the next three fields are ignored. The critical action fields allow
switching between tables defined in the VIDF based on current values of selected IDFS header
record status (mode) bytes. The size of the crit_action field is dependent upon the number of
states defined for the status byte flagged as the critical status byte and upon whether or not the
sensors utilize the same indexes into the tbl field. If each sensor defines unique tbl offset values,
then the maximum size of the crit_action field would be equal to the number of sensors times
the number of states defined for the status byte in question.

4.14.9 crit_status

This field is a set of sen values each of which is an offset into the status bytes array
(mode_index) in the header record. The indicated status byte values control which table is to be
acquired at any given time and applied to the data. If a particular sensor does not use a critical
status byte, then its crit_status element is set to –1 and the IDFS data access software will use
the tbl_off value for the sensor in question to determine which portion of the table is to be
applied to the data.

4.14.10 crit_off

This is a set of sen values where for each sensor which has a critical status byte defined,
this is the offset into the crit_action array. If a particular sensor has a -1 entry for its crit_status
element, then it should also have a -1 for its crit_off entry.

4.14.11 crit_action

This field is a set of crit_act_sz offsets into the VIDF table values defined by the field
tbl. The offsets for each sensor are pointed to by the crit_off values. Each entry in the
crit_action array is an offset into the tbl field and points to the first element of a set of
polynomial coefficients or the first element in a look-up table. For each sensor, there must be
one offset defined for each possible state of the status byte flagged as the critical status byte.
Which offset to use depends on the actual value of the status byte (e.g., value of 0 uses first
offset, value of 1 uses second offset, etc.). Each sensor that utilizes a critical status byte can
access different locations within the tbl field, which is accomplished by providing unique offset
values in the crit_action field. The status bytes (modes) are defined using the status,
status_names, and states fields in the VIDF. When the mode-dependent offsets are defined for
a given sensor, the table index value defined by tbl_off is ignored; however, the tbl_off value
still needs to be defined and it is suggested that the value be set to –1.

4.14.12 tbl_fmt

This field is a set of sen or status values depending on tbl_var. If tbl_var is 4 or 5, then
the table is a function of the status flags (mode data) and tbl_fmt has status elements.
Otherwise, the table is a function of sensor data and tbl_fmt has sen elements. Each tbl_fmt
value defines the format of the data in the tbl field for one of the sensors or one of the status
bytes (modes) defined in the VIDF. The recognized definitions are described below.

VIDF Field Definitions 52 April 21, 2014

-1 The sensor or status byte has no defined table entries in the tbl field.
 0 The sensor or status has a table defined for it in the form of an expanded look-up

table which is assumed to have 2 tdw_len elements where tdw_len is the bit length
defined for the sensor in the VIDF tdw_len field.

N The sensor or status has a table defined for it in the form of an (N-1) order
polynomial.

For ASCII tables, the tbl_fmt value should be set to 0.

4.14.13 tbl_off

This field is a set of sen or status values depending on tbl_var. If tbl_var is 4 or 5, then
the table is a function of the status flags (mode data) and tbl_off has status elements. Otherwise,
the table is a function of sensor data and tbl_off has sen elements. Each value in tbl_off is an
index into the tbl array to the beginning table entry for the sensor or status byte. Each sensor or
status has a unique index value allowing each to have its own tabular values associated with it.
Multiple sensors or status bytes can index into the same value indicating that one table applies to
multiple sensors or statuses.

If a sensor or status does not have a defined table in this table block (tbl_fmt = -1), then
its offset (tbl_off) is set to -1. If the sensor or status has several tables defined through the use of
the critical action fields, then the table offset value tbl_off should be set to –1. The IDFS data
access software will dynamically switch between the tables depending on the currently defined
critical status state and the table offset value defined by crit_action.

4.14.14 tbl_sca

This field is a set of |tbl_sca_sz| elements containing the scale factors which will be
applied to the elements in the tbl. If there are no scaling factors (tbl_sca_sz = 0), then this field
is ignored and the table values are used as read (not scaled). Each scaling factor is a power of
ten which is used to convert the integer values in the tbl field into floating point values as:

VAL = tbl_value ∗10 tbl_sca

If tbl_sca_sz is negative, there is one scaling factor per sensor which is applied to all of
the defined tbl elements for that sensor. Otherwise, there is one scaling value for each element
in the tbl field.

4.14.15 tbl

This field is a set of tbl_ele_sz entries. Non-ASCII tables consist of 4-byte integer
values. These values are converted (where required) into floating point values through the use of
the scaling factors found in the field tbl_sca. ASCII table entries are strings each of which are a
maximum of 20 characters in length. Strings can have multiple words, and spaces count as 1
character in the character count. The ASCII strings must be in quotes (e.g., "two strings") in the
VIDF table entries. The tbl values constitute the sum total of all the look-up tables and sets of
polynomial coefficients or ASCII strings defined in this TABLE BLOCK.

VIDF Field Definitions 53 April 21, 2014

4.14.16 Example TABLE BLOCK Entries
Shown below are three examples of different VIDF table block entries. The first example

is a fixed-formatted VIDF table block definition for a virtual instrument which has three sensors
all returning voltage measurements. The raw IDFS data is converted to voltage by means of
polynomial expansion in each case and the coefficients are not expanded to full look-up tables.
Each sensor uses one scale factor for all coefficients, and there are no critical dependencies.
Sensors 0 and 2 use the same polynomial expansion which has 2 coefficients, and sensor 1 uses a
different polynomial expansion that has 4 coefficients.

l -3 /* tbl_sca_sz */
l 6 /* tbl_ele_sz */
b 0 /* tbl_type */
s 3 /* tbl_comnts */
m 3 1 /* tbl_desc */
t Three sets of polynomial coefficients which expand the raw /* 000 */
t sensor data to millivolts for sensors 0 and 2 and to /* 001 */
t microvolts for sensor 1. /* 002 */
b 0 /* tbl_var */
b 0 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_off */
n /* crit_action */
m 3 3 /* tbl_fmt */
b 2 4 2 /* 000-002 */
m 3 3 /* tbl_off */
l 0 2 0 /* 0000-0002 */
m 3 3 /* tbl_sca */
b -3 -6 -3 /* 000-002 */
m 6 3 /* tbl */
l 4500 500 10000000 /* 000-002 */
l 5000000 -10000 300 /* 003-005 */

The same example for a token-tagged VIDF file is as follows:

struct TableN {
 int tbl_sca_sz = -3; /* tbl_sca_sz */
 int tbl_ele_sz = 6; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * Three sets of polynomial coefficients which expand the raw
 * sensor data to millivolts for sensors 0 and 2 and to
 * microvolts for sensor 1.
 */
 int tbl_var = 0; /* tbl_var */
 int tbl_expand = 0; /* tbl_expand */

VIDF Field Definitions 54 April 21, 2014

 int crit_act_sz = 0; /* crit_act_sz */
 int format [3] = {2, 4, 2}; /* format */
 int offset [3] = {0, 2, 0}; /* offsets */
 int scale [3] = {-3, -6, -3}; /* scale factor */
 int values [6] = { /* values */
 4500, 500, 10000000, 5000000, -10000, 300 /* 000 – 005 */
 };
};

Note that for a token-tagged VIDF file, information that is defined per table is grouped

into a Table block structure. In the example shown above, the structure is labeled TableN, where
N would be replaced by the table number, starting with 0. If no tables are defined (n_tbls = 0),
there are no Table structures contained within the token-tagged VIDF file.

The next fixed-formatted VIDF example is nearly the same as the first with the exception

that for sensor 1, the data is converted to physical units differently depending on whether the
instrument has been placed in high or low gain mode. This mode has been stored in the first
status byte in the header records. The polynomial coefficients to use for the expansion of the
data are determined through the use of the critical action information. When the status byte
(mode) value is 0, the polynomial coefficients begin at tbl offset 2 (first crit_action value), and
when the status byte is 1, the polynomial coefficients begin at tbl offset 6 (second crit_action
value). There is also now one scaling factor per table value.

l 10 /* tbl_sca_sz */
l 10 /* tbl_ele_sz */
b 0 /* tbl_type */
s 5 /* tbl_comnts */
m 5 1 /* tbl_desc */
t Four sets of polynomial coefficients which expand the raw /* 000 */
t sensor data to millivolts for sensors 0 and 2 and to /* 001 */
t microvolts for sensor 1. There are 2 sets of coefficients /* 002 */
t for sensor 1 depending on the gain. Switching between the /* 003 */
t coefficients is handled by the critical action info /* 004 */
b 0 /* tbl_var */
b 0 /* tbl_expand */
l 2 /* crit_act_sz */
m 3 3 /* crit_status */
b -1 0 -1 /* 000-002 */
m 3 3 /* crit_off */
s -1 0 -1 /* 000-002 */
m 2 2 /* crit_action */
l 2 6 /* 000-001 */
m 3 3 /* tbl_fmt */
b 2 4 2 /* 000-002 */
m 3 3 /* tbl_off */
l 0 2 0 /* 000-002 */

VIDF Field Definitions 55 April 21, 2014

m 10 5 /* tbl_sca */
b -3 -3 -5 -5 -5 /* 000-004 */
b -5 -6 -6 -6 -6 /* 005-009 */
m 10 5 /* tbl */
l 4500 500 10000000 5000000 -10000 /* 000-004 */
l 300 10000000 5000000 -10000 300 /* 005-009 */

The same example for a token-tagged VIDF file is as follows:

struct TableN {
 int tbl_sca_sz = 10; /* tbl_sca_sz */
 int tbl_ele_sz = 10; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * Four sets of polynomial coefficients which expand the raw
 * sensor data to millivolts for sensors 0 and 2 and to
 * microvolts for sensor 1. There are 2 sets of coefficients
 * for sensor 1 depending on the gain. Switching between the
 * coefficients is handled by the critical action info
 */
 int tbl_var = 0; /* tbl_var */
 int tbl_expand = 0; /* tbl_expand */
 int crit_act_sz = 2; /* crit_act_sz */
 struct CriticalAction {
 int status [3] = {-1, 0, -1}; /* status */
 int offset [3] = {-1, 0, -1}; /* offset */
 int table [2] = { /* table */
 2, 6 /* 000 – 001 */
 };
 };
 int format [3] = {2, 4, 2}; /* format */
 int offset [3] = {0, 2, 0}; /* offsets */
 int scale [10] = { /* scale_factor */
 -3, -3, -5, -5, -5, -5 /* 000 – 005 */
 -6, -6, -6, -6}; /* 006 – 009 */
 int values [10] = { /* values */
 4500, 500, 10000000, 5000000, -10000, 300 /* 000 – 005 */
 10000000, 5000000, -10000, 300 /* 006 – 009 */
 };
};

The last fixed-formatted VIDF example shows the construction of an ASCII table. The

table is a function of raw status bytes (modes). There are two status bytes each of which have
two discrete states. The ASCII table defines the states.

l 0 /* tbl_sca_sz */
l 4 /* tbl_ele_sz */

VIDF Field Definitions 56 April 21, 2014

b 1 /* tbl_type */
s 1 /* tbl_comnts */
m 1 1 /* tbl_desc */
t ASCII definitions of status states /* 000 */
b 4 /* tbl_var */
b 0 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_off */
n /* crit_action */
m 2 2 /* tbl_fmt */
b 0 0 /* 000-002 */
m 2 2 /* tbl_off */
l 0 2 /* 0000-0002 */
n /* tbl_sca */
m 4 4 /* tbl */
T “Hi” “Low” “Off” “Standby” /* 000-003 */

The same example for a token-tagged VIDF file is as follows:

struct TableN {
 int tbl_sca_sz = 0; /* tbl_sca_sz */
 int tbl_ele_sz = 4; /* tbl_ele_sz */
 int tbl_type = 1; /* tbl_type */
/*
 * ASCII definitions of status states
 */
 int tbl_var = 4; /* tbl_var */
 int tbl_expand = 0; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_sz */
 int format [2] = {0, 0}; /* format */
 int offset [2] = {0, 2}; /* offsets */
 string values [4] = { /* values */
 “Hi”, “Low”, “Off”, “Standby” /* 000 – 003 */
 };
};

4.15 CONSTANT BLOCK

A VIDF constant block consists of 5 fields which describe the constant entries associated
with it. Unlike table definitions each of which can hold several tables of various formats per
IDFS sensor, each constant definition holds only one value per IDFS sensor and all values must
represent the same quantity (const_id is the same for all sensors).

There are num_consts CONSTANT BLOCK definitions where each constant definition
has a different const_id. If num_consts is 0, then there are no defined constants for this IDFS.

VIDF Field Definitions 57 April 21, 2014

There are no required constant definitions within the IDFS paradigm. If a constant which is
needed for a computation in the IDFS data access software is not found, either the computation
will be skipped or default values will be used.

One specific example where constants are used is in the generation of pitch angle values.
The dot product computation for pitch angle requires the existence of the 3 constants defining the
sensor normal vector to the instrument aperture (const_id = 6,7,8) given with respect to the
magnetometer used for computing pitch angles. If these are not present, then the pitch angles are
simply not calculated. For the case where the VIDF indicates that the pitch angles are defined as
constants within the VIDF file (const_id = 11), the pitch angle values are simply not returned if
the constants are not present.

4.15.1 const_id

This field contains a value which identifies the defined constants as being within one of
several predefined categories. The field identifies the constant to the IDFS data access software
which may require it in certain calculations. The defined categories are shown in the table
below. The generic category is used for any constant which fits none of the other categories.

CONST_ID DEFINITIONS
CONST_ID DEFINITION

0 Generic
1 elevation angle
2 azimuthal angle offsets
3 azimuthal field of view (FWHM)
4 initial aperture elevation angle
5 final aperture elevation angle
6 Axis A component of aperture normal vector
7 Axis B component of aperture normal vector
8 Axis C component of aperture normal vector
9 initial azimuthal angle
10 final azimuthal angle
11 pitch angle
12 euler angle
13 euler angle rotation axis
14 start of spin azimuthal angle offset
15 declination angle
16 right ascension angle
17 background

The elevation angle constant (const_id = 1) assumes that the elevation angle runs from 0-

180 degrees with 0 degrees being parallel to Axis C in a right-handed 3-D coordinate system
(refer to diagram in section 1.7). The azimuthal angle offsets (const_id = 2), when present, are
used by the IDFS data access software to compute offsets in the returned spin angle for each
sensor. The initial and final aperture elevation angle values (const_id = 4,5) must be defined
between the range of 0 to 180 degrees. In addition, the values must not be the same value; in

VIDF Field Definitions 58 April 21, 2014

other words, a theta range, not a point, must be defined for each sensor, with the initial elevation
angle value being less than the final elevation angle value for each sensor. The initial and final
azimuthal angle constants (const_id = 9,10) are used in conjunction with the token-tagged VIDF
extensible field phi_method. When the phi_method field value indicates that the azimuthal
angles have pre-defined values, the IDFS data access software will pick up the initial and final
azimuthal angle constants and return these values.

If pitch angles are defined, there are basically two options available for the specification
of the pitch angle values: (1) the dot product of the outward directed unit normal to the detector
aperture with the local magnetic field can be computed or (2) pre-defined pitch angle values for
each sensor can be defined as a constant in the VIDF. For option 1, const_id’s 6,7 and 8 must
be provided to define the aperture normal vector. When the pa_format field value indicates that
the second option is specified, the IDFS data access software will pick up the pitch angle
constants (const_id = 11) defined for each sensor and return these values. The user is referred
to section 4.10 for a more in-depth explanation of pitch angle definitions.

If euler angle information has been defined within the VIDF, there are basically two

options available for the specification of the euler angles: (1) the euler angles are identified as
sensors values defined within a specific IDFS data source or (2) pre-defined euler angle values
for each sensor can be defined as constants in the VIDF. When the pmi_format field value
indicates that the second option is specified, routines will pick up the euler angle constants
(const_id = 12) and the euler angle rotation axes (const_id = 13) defined for each sensor. There
must be num_pmi_angles euler angle constants and rotation axes defined within the VIDF, the
values must be already in units of degrees and the order in which the constants appear in the
VIDF file defines the order of application.

If celestial position (declination and right ascension) angle information has been defined

within the VIDF, there are basically two options available for the specification of the celestial
position angles: (1) the celestial position angles are identified as sensors values defined within a
specific IDFS data source or (2) pre-defined celestial position angle values for each sensor can
be defined as constants in the VIDF. When the cp_format field value indicates that the second
option is specified, routines will pick up the declination angle constants (const_id = 15) and the
right ascension angle constants (const_id = 16) defined for each sensor. The values must be
already in units of degrees.

If background information has been defined within the VIDF, there are basically two

options available for the specification of the background values: (1) the background values are
identified as sensor values defined within a specific IDFS data source or (2) pre-defined
background values for each sensor can be defined as constants in the VIDF. When the
bkgd_format field value indicates that the second option is specified, routines will pick up the
background constants (const_id = 17) defined for each sensor. The values must already be in the
units desired.

The start of spin azimuthal angle offsets (const_id = 14), when present, are used by the

IDFS data access software in order to determine the start of spin using azimuthal angle
information. The default method within the IDFS paradigm flags the start of spin as the point at

VIDF Field Definitions 59 April 21, 2014

which the azimuthal angle crosses the 0 degree position (this is the point at which the instrument
looks towards the sun). In other words, when the instrument has rotated to point toward the sun,
then the start of spin has been found. If the start of spin is to be defined as the point where the
sun sensor views the sun, then the values defined for the start of spin azimuthal angle offset
(const_id = 14) represent the azimuthal angle offset when the start of spin has been encountered.
The IDFS data access software flags the point at which the azimuthal angle crosses this angle
(const_id = 14), specified in hundredths of a degree, to mark the start of spin instead of 0
degrees. Note, the contents of const_id = 14 should be the same as const_id = 2 if start of spin
occurs when the sun sensor points toward the sun.

Since the azimuthal angle values that are computed and returned for each sweep may not

return the exact angle specified as the marker for the start of a spin, the IDFS data access
software takes into account a tolerance factor. The tolerance factor is based on the instrument
timing and is computed as follows:

(360.0 [deg/rev] / spin [rev/msec]) * (swp_time [msec] / n_sample)

where spin is the azimuthal rate of rotation for the virtual instrument, swp_time is the

time duration of the sweep, and n_sample is the number of data samples returned. This
tolerance factor is added to the angle value that marks the start of a spin and this angular range is
what the IDFS data access software is looking for when determining when a new spin has begun.
For more information on start of spin, refer to section 5.9.

4.15.2 const_comnts

The number of comment lines within the constant description field.

4.15.3 const_desc
A set of free-form text, each line being a maximum of 79 characters in length. The

number of lines of text in the comment field is defined in the const_comnts entry. Comment
lines are generally used to give a brief description of the constant contents and usage.

4.15.4 const_sca

This field is a set of sen elements containing the scale factors which will be applied to the
elements in the const array. Each scaling factor is a power of ten which is used to convert the
integer values in the const field into floating point values as:

VAL = const_value ∗ 10const_sca

4.15.5 const
This field is a set of sen entries stored in 4-byte integers. These values are converted into

floating point values through the use of the scaling factors found in the field const_sca.

VIDF Field Definitions 60 April 21, 2014

4.15.6 Example CONSTANT BLOCK Entry
Shown below is an example of a VIDF constant block entry for a fixed-formatted VIDF

file. This example shows the x-component of the detector aperture normal for a virtual
instrument which has five sensors.

b 6 /* const_id */
s 1 /* const_comnts */
m 1 1 /* const_desc */
t The x-component of the unit normal aperture vectors /* 00001 */
m 5 5 /* const_sca */
b -5 -5 -5 -5 -5 /* 0000-0004 */
m 5 5 /* const */
l 91234 87621 77472 45200 27481 /* 0000-0004 */

The same example for a token-tagged VIDF file is as follows:

struct ConstantN {
 int id = 6; /* const_id */
/*
 * The x-component of the unit normal aperture vectors
 */
 int scale [5] = {-5, -5, -5, -5, -5}; /* scale_factor */
 int values [5] = {91234, 87621, 77472, 45200, 27481}; /* values */
};

Note that for a token-tagged VIDF file, information that is defined per constant is

grouped into a Constant block structure. In the example shown above, the structure is labeled
ConstantN, where N would be replaced by the constant number, starting with 0. If no constants
are defined (n_consts = 0), there are no Constant structures contained within the token-tagged
VIDF file.

VIDF Field Definitions 61 April 21, 2014

5. Fields Pertinent only to Token-Tagged VIDFs

As more and more data sets were being converted into the IDFS storage format, the need
to expand the current set of fields defined within the VIDF file finally became a reality. In order
to preserve backwards compatibility with data sets already in IDFS format, software was
modified to enable the parsing of a token-tagged, field-extensible VIDF file, while maintaining
the ability to parse the old, fixed-formatted binary VIDF files. The token-tagged VIDF file
format allows for the additional definition of new fields within the ASCII VIDF file. However,
keep in mind that although new fields can be defined and stored in the token-tagged VIDF files,
these fields are not automatically utilized by an end-user application or the IDFS data access
software. Code changes must be made to the software which parses the VIDF file and returns
information contained in the VIDF file in order to look for these newly defined fields.

The following fields have been added to the recognized list of VIDF fields. If there is a

need to utilize any of the newly defined fields, the ASCII VIDF file must be created in the token-
tagged format. If a fixed-formatted VIDF file already exists, one can utilize the converter
program vidftov3 to translate the fixed-formatted VIDF file into a token-tagged VIDF file. The
original fixed-formatted VIDF file is preserved since the token-tagged VIDF files are renamed
with a “.v3” extension added to the end of the filename.

5.1 AZIMUTHAL COMPUTATION Information

The IDFS data access software automatically computes and returns initial and final
azimuthal angles for each data value returned for a given IDFS sensor. If the spin rate indicates
a parked or otherwise non-rotating status, the sun_sen field in the data record holds the angle. If
the experiment is spinning, the computation of these angle values is performed. The single
VIDF field phi_method defines how the angles are computed.

5.1.1 phi_method

This field defined how the azimuthal angle values are to be computed by the IDFS data
access software. If the value for this field is set to 1, the initial and final azimuthal angle
constants (const_id = 9,10) are retrieved from the VIDF file and these values are returned. If the
value for this field is set to 0, the IDFS data access software will compute the angles utilizing the
spin information contained in the data record and timing information pertinent to the IDFS data
source (refer to section 10.2). For backwards compatibility, when fixed-formatted VIDF files
are being processed, the value for this field will be returned as 0 by the IDFS data access
software which parses the VIDF files.

5.1.2 Example phi_method Entry

The example shown below defines the azimuthal computation scheme as one in which
VIDF constants are defined.

int phi_method = 1; /* phi_method – use consts */

VIDF Field Definitions 62 April 21, 2014

5.1.3 spin_time_offset
There may be instances where the sensors are mounted in such a way that the sensors

cross the azimuthal zero degree position at different times. This azimuthal zero degree position
is referred to as the sun_sen value and is located as a single value within the IDFS data record
(refer to section 10.2.2). Since the computation for the azimuthal angles for each sensor are
computed using this information, there may be the need to specify an azimuthal timing
correction factor per sensor. This field is defined in terms of milliseconds. For backwards
compatibility, when fixed-formatted VIDF files are being processed, the value for this field will
be returned as 0 by the IDFS data access software which parses the VIDF files. This is also the
case if the spin_time_offset field is not defined within the Sensor block within the token-tagged
VIDF file.

5.1.4 Example spin_time_offset Entry
The example shown below defines a 10-millisecond azimuthal timing correction factor

for sensor zero.

struct Sensor0 {
 string name = “Potential Calculation Method”;
 int d_type = 0;
 int status = 1;
 int tdw_len = 4;
 int time_offset = 0;

int spin_time_offset = 10;
};

5.2 NANOSECOND TIME ADJUSTMENT Information

The finest resolution supported by the IDFS data access software is down to the
nanosecond. However, the field dr_time in the data record holds the relative beginning time of
day in milliseconds for the first data element of the first sensor set in the data record. In order to
define the time tag down to the nanosecond precision, the VIDF field nano_defined was created.

5.2.1 nano_defined

This field serves as a flag to indicate if a nanosecond time adjustment value is contained
within the data_array matrix in the data record. If the value for this field is set to 0, no
correction to the time tag value dr_time is made. In other words, millisecond resolution is
adequate for the data being processed. If the value for this field is set to 1, the IDFS data access
software will interpret the first four bytes contained within the data_array matrix in the data
record as a nanosecond time adjustment factor and will use this value when computing the time
tags associated with the data (refer to section 10.1). The nanosecond time adjustment factor is
interpreted as a signed, 4-byte quantity and therefore, can reach a maximum of 2,147,483,647.
However, since this value contains the resolution between nanosecond and millisecond precision,
the value should be no larger than 999,999. For backwards compatibility, when fixed-formatted
VIDF files are being processed, the value for this field will be returned as 0 by the software
which parses the VIDF files.

VIDF Field Definitions 63 April 21, 2014

5.2.2 Example NANOSECOND TIME ADJUSTMENT Information Entry
The example shown below indicates that a nanosecond time adjustment value is defined

within the data record.

int nano_defined = 1; /* nanosecond precision enabled */

5.3 HEADER RECORD TIME ADJUSTMENT Information

The finest resolution supported by the IDFS data access software is down to the
nanosecond. The data_accum field in the header record has an associated scaling factor
(time_units) which allows the accumulation time to be expressed in terms of nanoseconds.
However, the data_lat, swp_reset and sen_reset fields can be expressed only in microseconds.
In order to allow for these three fields to be expressed in the same manner as the data_accum
field, the following three VIDF fields have been added to the token-tagged, field-extensible
VIDF file definition..

5.3.1 data_lat_units

This field is a 1-byte quantity that together with the data_lat field describes the dead
time between successive data acquisitions. This field contains the scaling given as a power of
ten, which is used to take the value in the data_lat field to units of seconds. Since the finest
resolution supported by the IDFS data access software is down to the nanosecond,
data_lat_units CANNOT be less than -9. The conversion is given below.

DATA_LATENCY_TIME = data_lat ∗ 10data_lat_units
For backwards compatibility, when fixed-formatted VIDF files are being processed, the value for
this field will be returned as -6 by the software which parses the VIDF files to represent
microseconds.

5.3.2 Example data_lat_units Entry

The example shown below indicates that the data_lat value in the header record is
expressed in terms of milliseconds.

int data_lat_units = -3; /* data_lat in milliseconds */

5.3.3 swp_reset_units

This field is a 1-byte quantity that together with the swp_reset field describes the dead
time between successive columns of data within the data matrix when time is advancing down
the data columns or between successive data rows when time is advancing across the rows. This
field contains the scaling given as a power of ten, which is used to take the value in the
swp_reset field to units of seconds. Since the finest resolution supported by the IDFS data
access software is down to the nanosecond, swp_reset_units CANNOT be less than -9. The
conversion is given below.

SWP_RESET_TIME = swp_reset ∗ 10swp_reset_units

VIDF Field Definitions 64 April 21, 2014

For backwards compatibility, when fixed-formatted VIDF files are being processed, the value for
this field will be returned as -6 by the software which parses the VIDF files to represent
microseconds.

5.3.4 Example swp_reset_units Entry

The example shown below indicates that the swp_reset value in the header record is
expressed in terms of nanoseconds.

int swp_reset_units = -9; /* swp_reset in nanoseconds */

5.3.5 sen_reset_units

This field is a 1-byte quantity that together with the sen_reset field describes the dead
time between successive sensor sets of data. This field contains the scaling given as a power of
ten, which is used to take the value in the sen_reset field to units of seconds. Since the finest
resolution supported by the IDFS data access software is down to the nanosecond,
sen_reset_units CANNOT be less than -9. The conversion is given below.

SEN_RESET_TIME = sen_reset ∗ 10sen_reset_units

For backwards compatibility, when fixed-formatted VIDF files are being processed, the value for
this field will be returned as -6 by the software which parses the VIDF files to represent
microseconds.

5.3.6 Example sen_reset_units Entry

The example shown below indicates that the sen_reset value in the header record is
expressed in terms of seconds.

int sen_reset_units = 0; /* sen_reset in seconds */

5.4 TRANSFORMATION Information

Rotation angles are direction dependent. For purposes of the transform code, positive
angles are measured counter-clockwise in the right handed sense. Basically, a rotation is defined
about an axis. This axis remains the same within a transform. The angle of rotation describes
the relation of the rotated axes relative to the initial axis. Thus, the three combinations (one for
rotations about each axis) are shown in Figures 4, 5 and 6 for the positive angle theta:

VIDF Field Definitions 65 April 21, 2014

Figure 4. Rotation about +1 axis

Figure 5. Rotation about +2 axis

1’ axis
2’ axis
3’ axis

=
1 axis
2 axis
3 axis

cos (Psi) 0 -sin (Psi)
 0 1 0
sin (Psi) 0 cos (Psi)

+3 axis

+3’axis

+ Psi

+1 axis
 +1’ axis

+2 axis
+2’ axis

1’ axis
2’ axis
3’ axis

=
1 axis
2 axis
3 axis

1 0 0
0 cos (Psi) sin (Psi)
0 -sin (Psi) cos (Psi)

+2 axis

+2’axis

+ Psi

+3 axis
 +3’ axis

+1 axis
+1’ axis

VIDF Field Definitions 66 April 21, 2014

Figure 6. Rotation about +3 axis

Since you need to know from where you are starting your transform, it matters as to

where your spacecraft is orbiting. Transforms from interstellar space where the spacecraft is
orbiting around the sun will have a different orientation than spacecraft orbiting about a planet,
say Earth. The inertial frame is different depending on the orbiting body. If you are orbiting the
sun, then your inertial frame is in a heliocentric system. If the planet is Mars, then the inertial
system will be relative to Mars. The VIDF field orbiting_body provides this information.

Another factor that affects transformations is reference sensor signal delay. When a

reference sensor views the object, there is some delay between when the object is detected and
when this information is signaled. The delay is normally described as a time difference. If the
spacecraft is spinning, then the reference delay may be expressed as an angle. A positive angle
difference is measured as the azimuthal difference between the reference sensor and the
reference sensor signal (e.g. when the signal from the reference signal is delayed in time). A
negative angle indicates that the signal from the reference sensor occurs before the object is
detected by the reference sensor.

It is recognized that some sensors need an opposite change in a quantity to decide when
the object is detected. By the time the detection is made, decision is concluded, and signals are
transmitted, the sensor could no longer be viewing the object. Thus, a delay time
(ref_sen_delay) is needed so that time and distance may be changed to reflect the appropriate
position. This information is needed to align the time of the reference signal for coordinate
system transforms into an inertial reference system.

1’ axis
2’ axis
3’ axis

=
1 axis
2 axis
3 axis

 cos (Psi) sin (Psi) 0
-sin (Psi) cos (Psi) 0
 0 0 1

+1 axis

+1’axis

+ Psi

+2 axis
 +2’ axis

+3 axis
+3’ axis

VIDF Field Definitions 67 April 21, 2014

5.4.1 orbiting_body
This field specifies where your spacecraft is orbiting. The values recognized by the

IDFS software are defined as:

ORBITING_BODY FIELD DEFINITIONS
VALUE DEFINITION

0 Not Defined
1 Earth
2 Sun
3 Mars
4 Venus
5 Jupiter
6 Mercury
7 Saturn
8 Uranus
9 Neptune
10 Pluto

Another example of an orbiting body might be Mars. Note, that interstellar probes often

orbit different bodies through out their lifetime. Spacecraft launched from Earth start their
orientation with respect to the Earth. At some point in time, this will change to the Sun as the
spacecraft heads out into interstellar space. Once the spacecraft reach their destination, then
there could be another body that the spacecraft orbits. Thus, when changing the orbiting_body
definition in the VIDF, there needs to be a VIDF boundary and change with file close-outs at the
appropriate time.

5.4.2 Example orbiting_body Entry

The example shown below indicates that the orbiting_body value is Earth.

int orbiting_body = 1; /* orbits around Earth */

5.4.3 ref_sen_delay

This field is an adjustment factor that is defined so that the reference signal occurs
exactly at the time when the reference object was observed. The field ref_sen_delay_unit is
used to specify the units in which ref_sen_delay is expressed.

Positive values of ref_sen_delay make physical sense and represent a delay in the signal.
Negative values are used to adjust for something unique with the data. For example, when
processing the data, the operator selects the sensor closest to when the reference signal occurs
and this sensor may generate its data just before the reference sensor signal.

5.4.4 ref_sen_delay_unit

This field defines the unit for the value of ref_sen_delay. The values recognized by the
IDFS software are defined as:

VIDF Field Definitions 68 April 21, 2014

REF_SEN_DELAY_UNIT FIELD DEFINITIONS
VALUE DEFINITION

1 Seconds
2 Degrees
3 Radians

5.4.5 Example ref_sen_delay and ref_sen_delay_unit Entries

The time delay of the reference sensor is normally expressed in terms of time, referred to
in the equations below as time_ref_delay. However, the delay value specified in the VIDF may
be expressed in terms of time or angle. In the first example shown below, a delay value of 1.28
microseconds would be defined using the following 2 VIDF field entries:

float ref_sen_delay = 1.28e-6; /* 1.28 microseconds */
int ref_sen_delay_unit = 1; /* unit is seconds */

therefore,

time_ref_delay [sec] = ref_sen_delay [sec]

where [sec] specifies that the unit of time measurement is seconds.

For a spinning spacecraft, the reference sensor delay time may also be expressed in
degrees. In the second example shown below, a delay value of 3.2 degrees would be defined
using the following 2 VIDF field entries:

float ref_sen_delay = 3.2; /* 3.2 degrees */
int ref_sen_delay_unit = 2; /* unit is degrees */

therefore,

time_ref_delay [sec] = ref_sen_delay [deg] / (360 [deg/rev] * spin_rate [rev/sec])

For a spinning spacecraft, the reference sensor delay time may also be expressed in
radians. In the third example shown below, a delay value of 0.1024 radians would be defined
using the following 2 VIDF field entries:

float ref_sen_delay = 1024.0e-4; /* 3.2 degrees */
int ref_sen_delay_unit = 3; /* unit is radians */

therefore,

time_ref_delay [sec] = ref_sen_delay [rad] / (2pi [rad/rev] * spin_rate [rev/sec])

In all three examples shown above, the exact time when the reference object was sensed
can be computed using the equation:

adjusted current time [sec] = current time [sec] - time_ref_delay [sec]

VIDF Field Definitions 69 April 21, 2014

5.5 COORDINATE SYSTEM TRANSFORMATION Information

To aid in the analysis of the data, it may be necessary to convert the data that is stored in
the IDFS data set into a different coordinate system that is of importance to the Space Physics
community. Data may need to be converted into coordinate systems that have geocentric origins
such as Geocentric Equatorial Inertial (GEI), Geocentric Solar Ecliptic (GSE), Geographic
(GEO), Geocentric Solar Magnetospheric (GSM), Solar Magnetic (SM), and/or Geomagnetic
(MAG). Data may need to be converted into coordinate systems that have heliocentric origins
such as Heliocentric Earth Ecliptic (HEE), Heliocentric Aries Ecliptic (HAE), and/or
Heliocentric Earth Equatorial (HEEQ). Data may need to be converted into a coordinate system
that have spacecraft origins such as Principal Moments of Inertia (PMI).

In order to facilitate this data conversion, the VIDF definition has been extended to allow

for the specification of the information that is needed to transform the data into the various
coordinate systems that are supported by the IDFS data access software and these fields are
described below in sections 5.5.1, 5.5.2 and 5.5.3. Currently, within the IDFS paradigm,
coordinate system transformation is only applicable for the moments computations since true
vector data is available for conversion. For an overview and brief description of the supported
coordinate systems, the user is referred to the webpage http://cluster/vector_convert.html.

5.5.1 BASIC COORDINATE SYSTEM Information

5.5.1.1 coord_system_defined

This field indicates whether coordinate system transformation information has been
defined within the VIDF. For a token-tagged VIDF file, coordinate system transformation
definitions are specified by the presence of a CoordinateSystem block structure. If this structure
is not present, coordinate system transformation information is not defined for the IDFS in
question and the remainder of the fields in section 5.5.1, 5.5.2, and 5.5.3 are not used; otherwise,
the next field in this section and the fields defined in sections 5.5.2 and 5.5.3 are considered
active.

5.5.1.2 coord_system

This field indicates which coordinate system the data is stored under in the IDFS data set.
If the field is not defined within the VIDF file, the IDFS data access software defaults the
coordinate system to indicate that coordinate system transformation information is not available.

COORDINATE SYSTEM DEFINITIONS

ID STRING DEFINITION
SPACECRAFT Spacecraft coordinates

PMI Principal Moments of Inertia coordinates
GEI Geocentric Equatorial Inertial coordinates
GEO Geographic coordinates
GSE Geocentric Solar Ecliptic coordinates
GSM Geocentric Solar Magnetospheric coordinates
SM Solar Magnetic coordinates

http://cluster/vector_convert.html

VIDF Field Definitions 70 April 21, 2014

COORDINATE SYSTEM DEFINITIONS
ID STRING DEFINITION

MAG Geomagnetic coordinates
HEE Heliocentric Earth Ecliptic coordinates
HAE Heliocentric Aries Ecliptic coordinates

HEEQ Heliocentric Earth Equatorial coordinates

5.5.2 EULER ANGLE ROTATION Information

With some spacecraft, the spin axis is different than the spacecraft reference axis. The
offset of the spin axis from the spacecraft reference axis is given by a set of angles, referred to as
Euler angles. These angles describe the position of the spin axis relative to the spacecraft
reference axis and may be used to describe vectors relative to the spacecraft reference frame in
the frame of the spin axis. The Euler angles are specified in degrees with directions defined in
Section 5.4.

Not all spacecraft have Euler angles defined and not all spacecraft have the same Euler
angles. With some spacecraft, the reference axis of the spacecraft and the frame which contains
the spin axis are the same. Thus, the Euler angle rotations are not defined, as is the case for the
Viking mission. When these reference frames differ, then there is the need to define Principal
Moment of Inertia (PMI) reference Euler offset angles, as is the case for the Cluster mission.
Figure 7 illustrates how the Euler angles are defined for the Cluster mission:

Figure 7. Euler Angle definitions for the Cluster Mission

The description of how to form Euler angles for the virtual instrument being defined is
contained within thirteen fields of the VIDF. The thirteen Euler angle fields are described
below.

Psi 1

Psi 2

Psi
1

Axis
1

Axis
2

Axis
C

Axis
A

Axis
B

Psi
2

Axis
3

VIDF Field Definitions 71 April 21, 2014

5.5.2.1 pmi_defined
This field indicates whether Euler angle information has been defined within the VIDF.

For a token-tagged VIDF file, Euler angle definitions are specified by the presence of a PMI
block structure within a CoordinateSystem block structure. If this structure is not present, Euler
angles are not defined for the IDFS in question and the next twelve fields are not used;
otherwise, the next twelve fields are considered active.

5.5.2.2 pmi_format

This integer field is used to indicate which algorithm is to be used in computing the Euler
angle values. Currently, the only “algorithm” defined is a set of rotations built up from the
rotation definitions described in section 5.4 Therefore, the value for this field should be set to 1.
However, if the value of this field is set to 0, the Euler angle rotations are overridden and the
Euler angle values that are returned are the values that are defined in the CONSTANTS section
of the VIDF, identified as having a const_id value of 12 and the rotation axes associated with the
pre-defined Euler angle values are defined in the CONSTANTS section of the VIDF, identified
as having a const_id value of 13.

5.5.2.3 num_pmi_angles

This field is used to indicate the number of Euler angles that are defined for the
spacecraft in question. The value for this field should never be less than or equal to 0. If the
pmi_format value indicates that the Euler angle values are pre-defined constants, this field
indicates the number of constants and rotation axes to pick up from the VIDF file (all having the
const_id value of 12 and 13, respectively). Since the pre-defined Euler angle values have the
same const_id value, the order in which the constants appear in the VIDF file defines the order
of application.

5.5.2.4 pmi_project

A satellite program which can determine the Euler angles necessary for defining the
wandering of the spin axis needs to include these angles as part of the data. All of the necessary
Euler angles must be defined by and within a single scalar IDFS data source. The IDFS lineage
of the data file location for the Euler angles is specified utilizing the fields pmi_project,
pmi_mission, pmi_exper, pmi_inst and pmi_vinst. The pmi_project field is the ASCII
project acronym under which the Euler angle values are found. It is limited to 20 characters in
length. If the pmi_format value indicates that the Euler angle values are pre-defined constants,
this field should be omitted from the PMI block structure.

5.5.2.5 pmi_mission

This field is the ASCII mission acronym under which the Euler angle values are found. It
is limited to 20 characters in length. If the pmi_format value indicates that the Euler angle
values are pre-defined constants, this field should be omitted from the PMI block structure.

5.5.2.6 pmi_exper

This field is the ASCII experiment acronym under which the Euler angle values are
found. It is limited to 20 characters in length. If the pmi_format value indicates that the Euler
angle values are pre-defined constants, this field should be omitted from the PMI block structure.

VIDF Field Definitions 72 April 21, 2014

5.5.2.7 pmi_inst
This field is the ASCII instrument acronym under which the Euler angle values are

found. It is limited to 20 characters in length. If the pmi_format value indicates that the Euler
angle values are pre-defined constants, this field should be omitted from the PMI block structure.

5.5.2.8 pmi_vinst

This field is the ASCII virtual instrument acronym in which the Euler angle values are
found. It is limited to 20 characters in length. If the pmi_format value indicates that the Euler
angle values are pre-defined constants, this field should be omitted from the PMI block structure.

5.5.2.9 pmi_sensors

This field is an integer array of length num_pmi_angles, giving the sensor number(s)
within the virtual instrument which contains the Euler angles. The order of specification should
be the order of application. If the pmi_format value indicates that the Euler angle values are
pre-defined constants, this field should be omitted from the PMI block structure.

5.5.2.10 pmi_rotation_axis

Euler angles are defined so that they are rotations about an axis. The convention of
labeling is the same as defined in section 5.4, namely 1-axis, 2-axis, and 3-axis. This field is an
integer array of length num_pmi_angles, specifying the rotation axis for each Euler angle in the
order of Euler angle application. If the pmi_format value indicates that the Euler angle values
are pre-defined constants, this field should be omitted from the PMI block structure.

5.5.2.11 pmi_apps

Tables may need to be applied to the Euler angles to convert the storage values into the
correct orientation of degree measure. This field holds the number of tables to be applied. If the
pmi_format value indicates that the Euler angle values are pre-defined constants, this field
should be omitted from the PMI block structure.

5.5.2.12 pmi_tbls

This field, which is an integer array of length pmi_apps, specifies the table numbers
which will need to be applied to the Euler angles to convert the storage values into the correct
orientation of degree measure. Note that these table numbers are obtained from the VIDF
pertaining to the virtual instrument in which the Euler angle values are defined. If the
pmi_format value indicates that the Euler angle values are pre-defined constants, this field
should be omitted from the PMI block structure.

5.5.2.13 pmi_ops

This field, which is an integer array of length pmi_apps, specifies the table operations
which will need to be applied to each of the tables specified in pmi_tbls (see Appendix A of the
PIDF documentation http://www.idfs.org/Editors/pidfdoc.html for valid table operation entries).
If the pmi_format value indicates that the Euler angle values are pre-defined constants, this field
should be omitted from the PMI block structure.

VIDF Field Definitions 73 April 21, 2014

5.5.2.14 Example EULER ANGLE ROTATION Information Entries
Shown below are two examples of the VIDF Euler angle information entries. The first

example shows Euler angle information defined, making use of the sensor data contained in the
CLUSTERII / CLUSTER-3 / AUXILIARY / OA / CSATT IDFS. The CSATT IDFS has two
Euler angles. They are written in the virtual so that the angle represented by sensor 7 is applied
first, then sensor 8 (pmi_sensors [2] = {7, 8}). The Euler angle represented by sensor 7 rotates
about the 2-axis and the Euler angle represented by sensor 8 rotates about the 1-axis. Two tables
are needed to convert the stored Euler angle values to the correct orientation of degree measure.

struct CoordinateSystem {

string coord_system = “SPACECRAFT”; /* coord_system */
struct PMI {

 int format = 1; /* pmi_format */
 int num_angles = 2; /* num_pmi_angles */
 string project = “CLUSTERII”; /* pmi_project */
 string mission = “CLUSTER-3”; /* pmi_mission */
 string experiment = “AUXILIARY”; /* pmi_exper */
 string instrument = “OA”; /* pmi_inst */
 string vinstrument = “CSATT”; /* pmi_vinst */
 int sensors [2] = {7, 8}; /* pmi_sensors */
 int rot_axis [2] = {2, 1}; /* pmi_rotation_axis */
 int num_tbls = 2; /* pmi_apps */
 int tbls [2] = {0, 1}; /* pmi_tbls */
 int opers [2] = {0, 4}; /* pmi_ops */

};
};

The second example shows the VIDF entries for the PMI block structure when Euler

angle values are to be returned, but the values are defined as constants. The user is reminded that
when this format is selected, the euler angle constants (const_id = 12) and the euler angle
rotation axes constants (const_id = 13) must also be defined in the VIDF (refer to section 4.15).

struct CoordinateSystem {
 string coord_system = “SPACECRAFT”; /* coord_system */

struct PMI {
 int format = 0; /* pmi_format */
 int num_angles = 2; /* num_pmi_angles */

};
};

Note that while the PMI block structure is defined, it does not contain the information that

is pertinent for the extraction of the data from a specified IDFS data source. In addition, the
values defined as constants in the VIDF file must already be specified in units of degrees.

VIDF Field Definitions 74 April 21, 2014

5.5.3 CELESTIAL POSITION Information
Two angles are required to specify the spacecraft spin axis in the Geocentric Equatorial

Inertial (GEI) coordinate system – the right ascension angle and the declination angle. The right
ascension angle defines the right ascension of the spacecraft spin axis on the celestial sphere.
The declination angle defines the declination of the spacecraft spin axis on the celestial sphere.
These angles specify the relationship between the PMI coordinate system in the GEI coordinate
system and must be expressed in the inertial system of J2000.0. Together, these two angles are
referred to as celestial position angles.

The description of how to define celestial position angles for the virtual instrument being

defined is contained within fifteen fields of the VIDF. The fifteen celestial position angle fields
are described below.

5.5.3.1 cp_defined

This field indicates whether celestial position angle information has been defined within
the VIDF. For a token-tagged VIDF file, celestial position angle definitions are specified by the
presence of a CelestialPosition block structure within a CoordinateSystem block structure. If
this structure is not present, celestial position angles are not defined for the IDFS in question and
the next fourteen fields are not used; otherwise, the next fourteen fields are considered active.

5.5.3.2 cp_format

This integer field is used to indicate which algorithm is to be used in computing the
celestial position angle values. Currently, the only “algorithm” defined is the retrieval of the
values from a specified IDFS data source and the conversion of those values to physical units.
Therefore, the value for this field should be set to 1. However, if the value of this field is set to
0, the celestial position angle values that are returned are the values that are defined in the
CONSTANTS section of the VIDF, identified as having a const_id value of 15 for the
declination angles and a const_id value of 16 for the right ascension angles.

5.5.3.3 cp_project

A satellite program which can determine the celestial position angles needs to include
these angles as part of the data. All of the necessary celestial position angles must be defined by
and within a single scalar IDFS data source. The IDFS lineage of the data file location for the
celestial position angles is specified utilizing the fields cp_project, cp_mission, cp_exper,
cp_inst and cp_vinst. The cp_project field is the ASCII project acronym under which the
celestial position angle values are found. It is limited to 20 characters in length. If the
cp_format value indicates that the celestial position angle values are pre-defined constants, this
field should be omitted from the CelestialPosition block structure.

5.5.3.4 cp_mission

This field is the ASCII mission acronym under which the celestial position angle values
are found. It is limited to 20 characters in length. If the cp_format value indicates that the
celestial position angle values are pre-defined constants, this field should be omitted from the
CelestialPosition block structure.

VIDF Field Definitions 75 April 21, 2014

5.5.3.5 cp_exper
This field is the ASCII experiment acronym under which the celestial position angle

values are found. It is limited to 20 characters in length. If the cp_format value indicates that
the celestial position angle values are pre-defined constants, this field should be omitted from the
CelestialPosition block structure.

5.5.3.6 cp_inst

This field is the ASCII instrument acronym under which the celestial position angle
values are found. It is limited to 20 characters in length. If the cp_format value indicates that
the celestial position angle values are pre-defined constants, this field should be omitted from the
CelestialPosition block structure.

5.5.3.7 cp_vinst

This field is the ASCII virtual instrument acronym in which the celestial position angle
values are found. It is limited to 20 characters in length. If the cp_format value indicates that
the celestial position angle values are pre-defined constants, this field should be omitted from the
CelestialPosition block structure.

5.5.3.8 cp_declination_sensor

This field specifies the sensor number for the declination angle defined within the virtual
instrument which contains the celestial position angles. If the cp_format value indicates that the
celestial position angle values are pre-defined constants, this field should be omitted from the
CelestialPosition block structure.

5.5.3.9 cp_declination_apps

Tables may need to be applied to the celestial position angles to convert the storage
values into the correct orientation of degree measure. This field holds the number of tables to be
applied for the declination angle. If the cp_format value indicates that the celestial position
angle values are pre-defined constants, this field should be omitted from the CelestialPosition
block structure.

5.5.3.10 cp_declination_tbls

This field, which is an integer array of length cp_declination_apps, specifies the table
numbers which will need to be applied to the declination angle to convert the storage values into
the correct orientation of degree measure. Note that these table numbers are obtained from the
VIDF pertaining to the virtual instrument in which the celestial position angle values are defined.
If the cp_format value indicates that the celestial position angle values are pre-defined
constants, this field should be omitted from the CelestialPosition block structure.

5.5.3.11 cp_declination_ops

This field, which is an integer array of length cp_declination_apps, specifies the table
operations which will need to be applied to each of the tables specified in cp_declination_tbls
(see Appendix A of the PIDF documentation http://www.idfs.org/Editors/pidfdoc.html for valid
table operation entries). If the cp_format value indicates that the celestial position angle values
are pre-defined constants, this field should be omitted from the CelestialPosition block structure.

VIDF Field Definitions 76 April 21, 2014

5.5.3.12 cp_rt_ascension_sensor
This field specifies the sensor number for the right ascension angle defined within the

virtual instrument which contains the celestial position angles. If the cp_format value indicates
that the celestial position angle values are pre-defined constants, this field should be omitted
from the CelestialPosition block structure.

5.5.3.13 cp_rt_ascension_apps

Tables may need to be applied to the celestial position angles to convert the storage
values into the correct orientation of degree measure. This field holds the number of tables to be
applied for the right ascension angle. If the cp_format value indicates that the celestial position
angle values are pre-defined constants, this field should be omitted from the CelestialPosition
block structure.

5.5.3.14 cp_rt_ascension_tbls

This field, which is an integer array of length cp_rt_ascension_apps, specifies the table
numbers which will need to be applied to the right ascension angle to convert the storage values
into the correct orientation of degree measure. Note that these table numbers are obtained from
the VIDF pertaining to the virtual instrument in which the celestial position angle values are
defined. If the cp_format value indicates that the celestial position angle values are pre-defined
constants, this field should be omitted from the CelestialPosition block structure.

5.5.3.15 cp_rt_ascension_ops

This field, which is an integer array of length cp_rt_ascension_apps, specifies the table
operations which will need to be applied to each of the tables specified in cp_rt_ascension_tbls
(see Appendix A of the PIDF documentation http://www.idfs.org/Editors/pidfdoc.html for valid
table operation entries). If the cp_format value indicates that the celestial position angle values
are pre-defined constants, this field should be omitted from the CelestialPosition block structure.

5.5.3.16 Example CELESTIAL POSITION Information Entries

Shown below are two examples of the VIDF celestial position angle information entries.
The first example shows celestial position angle information defined, making use of the sensor
data contained in the CLUSTERII / CLUSTER-1 / AUXILIARY / OA / CSATT IDFS. Two
tables are needed to convert the stored celestial position angle values to the correct orientation of
degree measure. In this example, the same unit conversion is applied to both the declination and
right ascension angles, although this does not have to be the case.

struct CoordinateSystem {

 string coord_system = “SPACECRAFT”; /* coord_system */
 struct CelestialPosition {

 int format = 1; /* cp_format */
 string project = "CLUSTERII"; /* cp_project */
 string mission = "CLUSTER-1"; /* cp_mission */
 string experiment = "AUXILIARY"; /* cp_exper */
 string instrument = "OA"; /* cp_inst */
 string vinstrument = "CSATT"; /* cp_vinst */

VIDF Field Definitions 77 April 21, 2014

 int declination_sensor = 1; /* cp_declination_sensor */
 int declination_num_tbls = 2; /* cp_declination_apps */
 int declination_tbls [2] = {0, 1}; /* cp_declination_tbls */
 int declination_opers [2] = {0, 4}; /* cp_declination_ops */
 int rt_ascension_sensor = 0; /* cp_rt_ascension_sensor */
 int rt_ascension_num_tbls = 2; /* cp_rt_ascension_apps */
 int rt_ascension_tbls [2] = {0, 1}; /* cp_rt_ascension_tbls */
 int rt_ascension_opers [2] = {0, 4}; /* cp_rt_ascension_ops */

};
};

The second example shows the VIDF entries for the CelestialPosition block when

celestial position angle values are to be returned, but the values are defined as constants. The
user is reminded that when this format is selected, the declination angle constants (const_id =
15) and the right ascension angle constants (const_id = 16) must also be defined in the VIDF
(refer to section 4.15).

struct CoordinateSystem {

 string coord_system = “SPACECRAFT”; /* coord_system */
 struct CelestialPosition {
 int format = 0; /* cp_format */

};
};

Note that while the CelestialPosition block structure is defined, it does not contain the

information that is pertinent for the extraction of the data from a specified IDFS data source. In
addition, the values defined as constants in the VIDF file must already be specified in units of
degrees.

5.6 SPACECRAFT POTENTIAL Information

The IDFS data access software now has the capability of returning spacecraft potential data
for the IDFS data source in question. The spacecraft potential data may be used to adjust the
sensor data or scan data for calculations that determine absolute quantities. The spacecraft
potential data may be defined as a constant value or as a dynamic value from a separate IDFS
data source. The specification of a dynamic value is similar to the VIDF definition for pitch
angle information (section 4.10) and Euler angle rotation information (section 5.5.2). A dynamic
spacecraft potential value must be contained within a scalar IDFS data source. The specification
of the spacecraft potential data is defined using the twelve fields that are described below.

5.6.1 pot_src_defined

This field indicates whether spacecraft potential information has been defined within the
VIDF. For a token-tagged VIDF file, spacecraft potential definitions are specified by the
presence of a PotentialSource block structure. If this structure is not present, spacecraft potential
information is not defined for the IDFS in question and the next eleven fields are not used;
otherwise, the next eleven fields are considered active.

VIDF Field Definitions 78 April 21, 2014

5.6.2 pot_src_format
This integer field is used to indicate whether the spacecraft potential is a constant value

or a dynamic value. If the spacecraft potential is a constant value, the value for this field should
be set to 0 and the value that is returned by the IDFS data access software is the value defined in
the pot_constant_val field. If the spacecraft potential is a dynamic value coming from a
separate IDFS data source, the value for this field should be set to 1.

5.6.3 pot_src_project

This is the ASCII project acronym under which the spacecraft potential sensor is to be
found for a dynamic spacecraft potential. It is limited to 20 characters in length. If the
pot_src_format value indicates that the spacecraft potential is a constant value, this field should
be omitted from the PotentialSource block structure.

5.6.4 pot_src_mission

This is the ASCII mission acronym under which the spacecraft potential sensor is to be
found for a dynamic spacecraft potential. It is limited to 20 characters in length. If the
pot_src_format value indicates that the spacecraft potential is a constant value, this field should
be omitted from the PotentialSource block structure.

5.6.5 pot_src_exper

This is the ASCII experiment acronym under which the spacecraft potential sensor is to
be found for a dynamic spacecraft potential. It is limited to 20 characters in length. If the
pot_src_format value indicates that the spacecraft potential is a constant value, this field should
be omitted from the PotentialSource block structure.

5.6.6 pot_src_inst

This is the ASCII instrument acronym under which the spacecraft potential sensor is to be
found for a dynamic spacecraft potential. It is limited to 20 characters in length. If the
pot_src_format value indicates that the spacecraft potential is a constant value, this field should
be omitted from the PotentialSource block structure.

5.6.7 pot_src_vinst

This is the ASCII virtual instrument acronym in which the spacecraft potential sensor is
to be found for a dynamic spacecraft potential. It is limited to 20 characters in length. If the
pot_src_format value indicates that the spacecraft potential is a constant value, this field should
be omitted from the PotentialSource block structure.

5.6.8 pot_src_sen

This integer field is the sensor number of the source for the spacecraft potential as
defined in the designated IDFS source. If the pot_src_format value indicates that the spacecraft
potential is a constant value, this field should be omitted from the PotentialSource block
structure.

VIDF Field Definitions 79 April 21, 2014

5.6.9 pot_src_apps
This integer field defines the number of tables which must be applied to the defined

sensor (the source for the spacecraft potential) to bring its value to the appropriate units (volts)
necessary for computation. If the pot_src_format value indicates that the spacecraft potential is
a constant value, this field should be omitted from the PotentialSource block structure.

5.6.10 pot_src_tbls

An integer array of pot_src_apps which gives the table numbers which will need to be
applied to the sensor defined as the source of the spacecraft potential. Note that these table
numbers are obtained from the VIDF pertaining to the virtual instrument in which the spacecraft
potential sensor is defined. If the pot_src_format value indicates that the spacecraft potential is
a constant value, this field should be omitted from the PotentialSource block structure.

5.6.11 pot_src_ops

An integer array of pot_src_apps which gives the table operations which will need to be
applied to each of the tables specified in pot_src_tbls (see Appendix A of the PIDF
documentation http://www.idfs.org/Editors/pidfdoc.html for valid table operation entries). Note
that the spacecraft potential must have the electrical sign associated in order to generate the
correct type of spectral shifting for the source. This should be handled through the use of tables
if the potential located within the virtual description only contains a positive magnitude. If the
pot_src_format value indicates that the spacecraft potential is a constant value, this field should
be omitted from the PotentialSource block structure.

5.6.12 pot_constant_val

If the pot_src_format value indicates that the spacecraft potential is a dynamic value,
this floating point field is used to specify a value that is to be returned by the IDFS data access
software if there is no data available (i.e. data gaps) from the spacecraft potential data source for
the time period(s) being processed. If the pot_src_format value indicates that the spacecraft
potential is a constant value, this floating point field is used to specify the constant value that is
to be returned by the IDFS data access software for the spacecraft potential. In either case, the
value for this field must be defined in units of volts and must include the sign of the spacecraft
charge.

5.6.13 Example SPACECRAFT POTENTIAL Information Entries

Shown below are two examples of the Spacecraft Potential information entries. The first
example defines a dynamic spacecraft potential value that is retrieved from sensor 0 within the
CLUSTERII / CLUSTER-1 / EFW / POTENTIAL / SCPOT IDFS data set.

struct PotentialSource {
 int format = 1; /* pot_src_format */
 string project = “CLUSTERII”; /* pot_src_project */
 string mission = “CLUSTER-1”; /* pot_src_mission */
 string experiment = “EFW”; /* pot_src_exper */
 string instrument = “POTENTIAL”; /* pot_src_inst */
 string vinstrument = “SCPOT”; /* pot_src_vinst */

VIDF Field Definitions 80 April 21, 2014

 int potential_sensor = 0; /* pot_src_sen */
 int num_tbls = 1; /* pot_src_apps */
 int tbls = 0; /* pot_src_tbls */
 int opers = 0; /* pot_src_ops */
 float constant_value = 0.0; /* pot_constant_val */
};

The second example shows the VIDF entries for the PotentialSource block when a

constant spacecraft potential value is defined.

struct PotentialSource {
 int format = 0; /* pot_src_format */
 float constant_value = -1.0; /* pot_constant_val */
};

5.7 CALIBRATION SET Expansion Information

The original definition of the IDFS data storage format attached calibration sets to each of
the IDFS sensors defined for the virtual instrument in question. If the same calibration data was
to be used by all sensors, the calibration data had to be written into the data record n_sen times
per sensor set, with n_sen being defined in the header record. The definition of calibration sets
has been expanded such that a calibration set can be written to apply to all sensors within a
sensor set of the data record, instead of once per sensor.

As defined in Section 4.8.5 (cal_target), calibration sets which target the scan data must

precede those that apply to the sensor data. The following demonstrates how calibration data
would be ordered within the data array:

Calibration Sets written once per sensor set -
used by all sensors - (cal_scope = 1)

Calibration Sets written once per sensor
(cal_scope = 0)

Calibration Sets
which target scan
data (cal_target = 1)

Calibration Sets
which target sensor
data (cal_target = 0)

Calibration Sets
which target scan
data (cal_target = 1)

Calibration Sets
which target sensor
data (cal_target = 0)

This usage of calibration sets can be achieved through the use of the VIDF field cal_scope.

This field must be defined within the CalSet block structure which is defined for token-tagged
VIDF files only.

5.7.1 cal_scope

This field identifies how the calibration data is written in the IDFS data record for the
calibration set being defined. If the value for this field is set to 0, the IDFS data access software
expects that the calibration set is written once per sensor within the data record, which is the
original IDFS definition for calibration data. If this field is set to 1, the IDFS data access
software expects that the calibration set is written once per sensor set within the data record. For
backwards compatibility, when fixed-formatted VIDF files are being processed, the value for this

VIDF Field Definitions 81 April 21, 2014

field will be returned as 0 by the IDFS data access software which parses the VIDF files. This is
also the case if the cal_scope field is not defined within the token-tagged VIDF file for the
calibration set in question.

5.7.2 cal_d_type

The original definition of the IDFS data storage format did not allow for the specification
of the data format for the calibration data. It was mandated that the calibration data be
represented as unsigned integer binary data. With the new token-tagged VIDF file, how the
calibration data is represented within the IDFS data files for each of the defined calibration sets
can be specified using the cal_d_type field. The values for this field are identical to the values
defined for the d_type field (refer to section 4.5.5). However, for the sake of clarity, the
definitions are repeated in the table below.

CAL_D_TYPE FIELD DEFINITIONS
VALUE DEFINITIONS EXPONENT BASE WORD LENGTH (bits)

0 unsigned integer, binary data - cal_wlen
1 signed integer, binary data - cal_wlen
2 single precision, floating point data 10 32
3 double precision, floating point data 10 64
4 half precision 1, floating point data 10 16
5 half precision 2, floating point data 2 16
6 half precision 3, floating point data 2 16

For backwards compatibility, when fixed-formatted VIDF files are being processed, the

value for this field will be returned as 0 by the IDFS data access software which parses the VIDF
files. This is also the case if the cal_d_type field is not defined within the token-tagged VIDF
file.

Remember, when writing an IDFS data file, the largest word size of both sensor and
calibration data must be used as the word size throughout the data record.

5.7.3 Example CALIBRATION SET Expansion Information Entry

The example below shows 4 defined calibration sets where the first two sets are to be
written once per sensor set (cal_scope = 1) and the last two sets are to be written once per sensor
(cal_scope = 0). Notice that within the CalSet2 block structure, cal_scope is not defined, which
defaults to the original IDFS definition for calibration data. The first and third calibration sets
are applied to the scan data (cal_target = 1), and the second and fourth calibration sets are
applied to the sensor data (cal_target = 0). This definition complies with the order requirements
as defined in Section 5.7. In addition, the data format for the first calibration set is being set to
indicate that the data for calibration set zero is represented within the IDFS data files as single
precision, floating point data. Since the other calibration sets do not specify the data format, they
will be defaulted to the original IDFS definition for calibration data.

int n_cal_sets = 4; /* cal_sets */
struct CalSet0 {
 string name = “Scanline Number”; /* name */

VIDF Field Definitions 82 April 21, 2014

 int use = 0; /* use */
 int word_len = 16; /* word length */
 int target = 1; /* target */
 int scope = 1; /* scope */
 int d_type = 2; /* d_type */
};
struct CalSet1 {
 string name = “Gain Code”; /* name */
 int use = 0; /* use */
 int word_len = 16; /* word length */
 int target = 0; /* target */
 int scope = 1; /* scope */
};
struct CalSet2 {
 string name = “Scan Offset”; /* name */
 int use = 0; /* use */
 int word_len = 16; /* word length */
 int target = 1; /* target */
};
struct CalSet3 {
 string name = “Gain Format (Log/Linear)”; /* name */
 int use = 0; /* use */
 int word_len = 1; /* word length */
 int target = 0; /* target */
 int scope = 0; /* scope */
};

5.8 SCALAR PACKING Information

Within the IDFS paradigm, scalar data are singular measurements which depend at most
only on position and time. In order to condense the size of a data file, the IDFS data storage
format allows multiple measurements from a scalar sensor to be packed into a single sensor set
before being written into the data file. The actual number of samples packed into a sensor set is
contained in the n_sample field within the header record, not within the VIDF file. When
packing scalar data, the maximum packing size for scalar data must be specified using the VIDF
field max_packing. This piece of information is vital when there is pitch angle data to be
computed for the data source in question. The packing size is needed in order to allocate space
to hold the information pertinent to pitch angle computation since there will be one pitch angle
value computed for each of the packed scalar values contained within the data record.

5.8.1 max_packing

This field defines the maximum number of data samples which can be packed into a
single sensor set for scalar sensors (smp_id = 2). In other words, the max_packing field should
be set to the maximum value which could be placed in the n_sample field in the IDFS header
record for the data source in question. For backwards compatibility, when fixed-formatted VIDF
files are being processed, the value for this field will be returned as 1 by the IDFS data access

VIDF Field Definitions 83 April 21, 2014

software which parses the VIDF files. This is also the case if the max_packing field is not
defined within the token-tagged VIDF file.

5.8.2 Example SCALAR PACKING Information Entry

The example shown below indicates that the maximum number of packed scalar sensors
contained within a sensor set is 20.

int max_packing = 20; /* max_packing */

5.9 START OF SPIN Information

Within the IDFS paradigm, there are two methods utilized to determine the start of spin for
an IDFS data source. The first method is referred to as the angular method since the start of spin
is flagged as the point at which the azimuthal angle crosses a specified angle value (either 0
degrees or some other constant value defined as const_id = 14). Since the azimuthal angle
values that are computed and returned for each sweep may not return the exact angle specified as
the marker for the start of a spin, the IDFS data access software takes into account a tolerance
factor. This tolerance factor is based on the instrument timing and is computed as follows:

(360.0 [deg/rev] / spin [rev/msec]) * (swp_time [msec] / n_sample)

where spin is the azimuthal rate of rotation for the virtual instrument, swp_time is the time
duration of the sweep, and n_sample is the number of data samples returned. This tolerance
factor is added to the angle value that marks the start of a spin to form an angular range and
when an azimuthal angle value from the current sweep is found within this angular range, this
element of the sweep is flagged as the start of spin. This method is the default method that is
used within the IDFS paradigm.

The angular method works in most cases; however, when there is a gap in spin, there is the

possibility that data from different spin periods can be returned together as a single composite
spin. In order to remedy this problem, another method has been provided which uses time for
the determination of start of spin. This method allows the time of each spin to be explicitly
defined and is specified by defining an IDFS data source that is to be used to determine the spin
periods. Within the VIDF, the spin timing definition is similar to the VIDF definition for pitch
angle information (section 4.10) and is defined using the nine fields that are described below.
Upon start of execution, if any problems are encountered in accessing the specified IDFS data
source, the method that is used to determine the start of spin is reverted to the angular method.

5.9.1 start_spin_defined

This field indicates whether start of spin information has been defined within the VIDF.
For a token-tagged VIDF file, start of spin definitions are specified by the presence of a
StartOfSpin block structure. If this structure is not present, start of spin information is not
defined for the IDFS in question and the next eight fields are not used; otherwise, the next eight
fields are considered active.

VIDF Field Definitions 84 April 21, 2014

5.9.2 start_spin_project
The IDFS lineage of the data file location for the start of spin information is specified

utilizing the fields start_spin_project, start_spin_mission, start_spin_exper, start_spin_inst
and start_spin_vinst. The start_spin_project field is the ASCII project acronym under which
the start of spin values are found. It is limited to 20 characters in length.

5.9.3 start_spin_mission

This is the ASCII mission acronym under which the start of spin information is to be
found. It is limited to 20 characters in length.

5.9.4 start_spin_exper

This is the ASCII experiment acronym under which the start of spin information is to be
found. It is limited to 20 characters in length.

5.9.5 start_spin_inst

This is the ASCII instrument acronym under which the start of spin information is to be
found. It is limited to 20 characters in length.

5.9.6 start_spin_vinst

This is the ASCII virtual instrument acronym in which the start of spin information is to
be found . It is limited to 20 characters in length.

5.9.7 start_spin_sensor

This integer field is the sensor number of the source for the start of spin information as
defined in the designated IDFS source.

5.9.8 start_spin_msec_adj
Part of the start of spin information that is retrieved from the specified IDFS source is the

start time and the stop time associated with each identified spin. The IDFS data access software
returns every time tag in 2 parts, one which is expressed in milliseconds of the day and one
which contains the remaining nanoseconds of the day. The milliseconds of the day time element
can be adjusted by specifying a non-zero adjustment factor for the start_spin_msec_adj field.
This value can be either positive or negative. If there is no adjustment necessary, the value
should be set to zero.

5.9.9 start_spin_nsec_adj
Part of the start of spin information that is retrieved from the specified IDFS source is the

start time and the stop time associated with each identified spin. The IDFS data access software
returns every time tag in 2 parts, one which is expressed in milliseconds of the day and one
which contains the remaining nanoseconds of the day. The residual nanoseconds of the day
time element can be adjusted by specifying a non-zero adjustment factor for the
start_spin_nsec_adj field. This value can be either positive or negative. If there is no
adjustment necessary, the value should be set to zero. The nanosecond time adjustment factor is
interpreted as a signed, 4-byte quantity and therefore, can reach a maximum of 2,147,483,647.

VIDF Field Definitions 85 April 21, 2014

However, since this value contains the resolution between nanosecond and millisecond precision,
the absolute value of this field should be no larger than 999,999.

5.9.10 Example START OF SPIN Information Entries

The example shown below defines the IDFS source that is to be used for the start of spin
determination.

struct StartOfSpin {
 string project = “CLUSTERII”; /* start_spin_project */
 string mission = “CLUSTER-2”; /* start_spin_mission */
 string experiment = “AUXILIARY”; /* start_spin_exper */
 string instrument = “OA”; /* start_spin_inst */
 string vinstrument = “CSPSPIN”; /* start_spin_vinst */
 int sensor = 0; /* start_spin_sensor */
 int msec_adj = 0; /* start_spin_msec_adj */
 int nsec_adj = 0; /* start_spin_nsec_adj */
};

5.10 BACKGROUND Information

The IDFS data access software now has the capability of returning background data for the
IDFS data source in question. The background data may be used to adjust the sensor data for
calculations that determine absolute quantities. The background data may be defined as a
constant value or as a dynamic value from a separate IDFS data source. The specification of a
dynamic value is similar to the VIDF definition for pitch angle information (section 4.10) and
Euler angle rotation information (section 5.5.2). A dynamic background value must be contained
within a scalar IDFS data source. The specification of the background data is defined using the
eleven fields that are described below.

5.10.1 bkgd_defined

This field indicates whether background information has been defined within the VIDF.
For a token-tagged VIDF file, background definitions are specified by the presence of a
Background block structure. If this structure is not present, background information is not
defined for the IDFS in question and the next ten fields are not used; otherwise, the next ten
fields are considered active.

5.10.2 bkgd_format

This integer field is used to indicate which algorithm is to be used in computing the
background values. Currently, the only “algorithm” defined is the retrieval of the values from a
specified IDFS data source and the conversion of those values to physical units. Therefore, the
value for this field should be set to 1. However, if the value of this field is set to 0, the
background values that are returned are the values that are defined in the CONSTANTS section
of the VIDF, identified as having a const_id value of 17.

VIDF Field Definitions 86 April 21, 2014

5.10.3 bkgd_project
This is the ASCII project acronym under which the background sensor is to be found for

a dynamic background value. It is limited to 20 characters in length. If the bkgd_format value
indicates that the background is a constant value, this field should be omitted from the
Background block structure.

5.10.4 bkgd_mission

This is the ASCII mission acronym under which the background sensor is to be found for
a dynamic background value. It is limited to 20 characters in length. If the bkgd_format value
indicates that the background is a constant value, this field should be omitted from the
Background block structure.

5.10.5 bkgd_exper

This is the ASCII experiment acronym under which the background sensor is to be found
for a dynamic background value. It is limited to 20 characters in length. If the bkgd_format
value indicates that the background is a constant value, this field should be omitted from the
Background block structure.

5.10.6 bkgd_inst

This is the ASCII instrument acronym under which the background sensor is to be found
for a dynamic background value. It is limited to 20 characters in length. If the bkgd_format
value indicates that the background is a constant value, this field should be omitted from the
Background block structure.

5.10.7 bkgd_vinst

This is the ASCII virtual instrument acronym in which the background sensor is to be
found for a dynamic background value. It is limited to 20 characters in length. If the
bkgd_format value indicates that the background is a constant value, this field should be
omitted from the Background block structure.

5.10.8 bkgd_sensors

This field is an integer array of length sen, giving the sensor number of the source for the
background as defined in the designated IDFS source. If the bkgd_format value indicates that
the background is a constant value, this field should be omitted from the Background block
structure.

5.10.9 bkgd_apps

This field is an integer array of length sen, defining the number of tables which must be
applied to the defined sensor (the source for the background) to bring its value to the appropriate
units necessary for computation. If the bkgd_format value indicates that the background is a
constant value, this field should be omitted from the Background block structure.

VIDF Field Definitions 87 April 21, 2014

5.10.10 bkgd_tbls
An integer array, whose size is defined by the summation of the bkgd_apps values,

which gives the table numbers which will need to be applied to the sensor defined as the source
of the background. Note that these table numbers are obtained from the VIDF pertaining to the
virtual instrument in which the background sensor is defined. If the bkgd_format value
indicates that the background is a constant value, this field should be omitted from the
Background block structure.

5.10.11 bkgd_ops

An integer array, whose size is defined by the summation of the bkgd_apps values,
which gives the table operations which will need to be applied to each of the tables specified in
bkgd_tbls (see Appendix A of the PIDF documentation http://www.idfs.org/Editors/pidfdoc.html
for valid table operation entries). If the bkgd_format value indicates that the background is a
constant value, this field should be omitted from the Background block structure.

5.10.12 Example BACKGROUND Information Entries

Shown below are two examples of the Background information entries. The first
example defines a dynamic background value that is retrieved from the MARS / Mars_Express
/ ASPERA-3 / ELS / ELS05BK IDFS data set.

struct Background {
 int format = 1; /* bkgd_format */
 string project = “MARS”; /* bkgd_project */
 string mission = “Mars_Express”; /* bkgd_mission */
 string experiment = “ASPERA-3”; /* bkgd_exper */
 string instrument = “ELS”; /* bkgd_inst */
 string vinstrument = “ELS05BK”; /* bkgd_vinst */
 int sensors [16] = { /* bkgd_sensors */
 1, 2, 3, 4, 5, 6, 7, 8, /* 000 - 007 */
 9, 10, 11, 12, 13, 14, 15, 16 /* 008 - 015 */
 }; /* */
 int num_tbls [16] = { /* bkgd_apps */
 2, 2, 2, 2, 2, 2, 2, 2, /* 000 - 007 */
 2, 2, 2, 2, 2, 2, 2, 2 /* 008 - 015 */
 }; /* */
 int tbls [32] = { /* bkgd_tbls */
 0, 4, 0, 5, 0, 6, 0, 7, /* 0000 - 0007 */
 0, 8, 0, 9, 0, 10, 0, 11, /* 0008 - 0015 */
 0, 12, 0, 13, 0, 14, 0, 15, /* 0016 - 0023 */
 0, 16, 0, 17, 0, 18, 0, 19 /* 0024 - 0031 */
 }; /* */
 int opers [32] = { /* bkgd_ops */
 0, 4, 0, 4, 0, 4, 0, 4, /* 0000 - 0007 */
 0, 4, 0, 4, 0, 4, 0, 4, /* 0008 - 0015 */
 0, 4, 0, 4, 0, 4, 0, 4, /* 0016 - 0023 */

VIDF Field Definitions 88 April 21, 2014

 0, 4, 0, 4, 0, 4, 0, 4 /* 0024 - 0031 */
 }; /* */
};

The second example shows the VIDF entries for the Background block when

background values are to be returned, but the values are defined as constants. The user is
reminded that when this format is selected, the background constants (const_id = 17) must also
be defined in the VIDF (refer to section 4.15).

struct Background {
 int format = 0; /* bkgd_format */
};

Note that while the Background block structure is defined, it does not contain the

information that is pertinent for the extraction of the data from a specified IDFS data source. In
addition, the values defined as constants in the VIDF file must already be specified in the desired
units.

Multiple VIDF Files 89 April 21, 2014

6. Multiple VIDF files for a Given Instrument

If data within the VIDF file changes with time, for example the calibration coefficients
need to be modified, multiple VIDF files for the same virtual instrument can be defined. Each
VIDF file must specify a unique, valid time period over which the information in the VIDF is
applicable to the IDFS data set. In other words, the time periods covered by the multiple VIDF
files must not overlap and should define a time continuum. For example, if the first VIDF file
specifies:

ds_year 1991 de_year 1991
ds_day 256 de_day 256
ds_msec 0 de_msec 8180000
ds_usec 0 de_usec 0

and the next VIDF file specifies:

ds_year 1991 de_year 1991
ds_day 256 de_day 257
ds_msec 81790000 de_msec 0
ds_usec 0 de_usec 0

there is an overlap in time between the two VIDF files and this is not allowed. In addition, there
is a lower limit to the minimum timespan that a single VIDF file may contain. For database and
archiving purposes, VIDF file names contain the start year, day, hour, and minute for which the
VIDF file is defined. Therefore, each VIDF file must be defined to span at least one minute in
time; otherwise, an overwrite of multiple VIDF files would happen.

If the multiple VIDF files are divided at data/header file boundaries, there are no further
restrictions that are imposed upon the creation of the VIDF files. The state of the instrument at
each of the designated time segments can be defined by the creation of multiple VIDF files.

A different situation arises when more than one VIDF file corresponds to a single data
file; that is, the cross over to a new VIDF file happens within a data record in the middle of a
data file. There are some defined parameters within the VIDF file that can not change from
VIDF to VIDF, even though the data set may require that change. The following table lists the
VIDF fields that must preserve the same value across multiple VIDF files:

VIDF FIELD COMMENT
smp_id
d_type
tdw_len
sen_mode
da_method
cal_sets necessary in order to preserve the size of the data record.
cal_use necessary in order to preserve the size of the data record.
cal_wlen necessary in order to preserve the size of the data record.

Multiple VIDF Files 90 April 21, 2014

VIDF FIELD COMMENT
cal_scope
cal_target
cal_d_type
max_nss
data_len
status
sen use n_sen and sensor_index[] in the header record to specify which sensors

are actually returned. In addition, make sure that sensor definitions are
consistent from VIDF to VIDF; that is, make sure sensor X is the same
parameter definition across all defined VIDF's.

num_tbls since PIDF contains the definition of how to construct the units using the
tables and the PIDF file is not "time sensitive", only one PIDF file defined
per virtual instrument.

swp_len use n_sample in the header record to indicate the actual number of
transmitted values

time_off values do not have to stay the same BUT all time_off values should be set
so that the end time of the data sample(s) for all sensors contained within a
single sensor set reference a single VIDF file.

max_packing
nano_defined

Any changes to the values for any of these VIDF parameters mandates that the use of
multiple VIDF files be abandoned and that the data set be constructed as a different, new virtual
instrument. However, there are some values which can be modified between the multiple
instances of the VIDF file. These include:

• the time period over which the information in the VIDF is valid

• the definition of a fill value

• the status of each defined sensor

• the inclusion / exclusion of pitch angle information, including modifications to the IDFS

source that is used to compute the pitch angle values

• the contents of the tables that are defined within the VIDF (note that while the contents
may change, the number of tables cannot change due to PIDF restrictions / interactions)

• the number of constants defined and the values for these constants

• the azimuthal angle computation flag

Fixed-Formatted VIDF Example 91 April 21, 2014

7. FIXED-FORMATTED VIDF EXAMPLE

The fixed-formatted VIDF file is built as an ASCII file and then converted into a binary
file that is used by the IDFS data access software (the binary file allows for faster access). The
ASCII file consists of an entry definition field followed by a VIDF data field value and an
optional comment field. The following example includes all standard entries plus many of the
optional fields. This VIDF describes the nadir pointing electron sensors on the Medium Energy
Particle Spectrometer (MEPS) portion of the Particle Environment Monitor (PEM) aboard the
Upper Atmosphere Research Satellite (UARS).

There are twelve (12) tables of varying types including an ASCII table. The detector
efficiencies table (TABLE 2) makes use of the critical action feature where there are actually two
tables defined because the efficiencies vary depending on the applied bias voltage --"HVPS3
State" (crit_status=1 for each sensor and "HVPS3 State" is the second defined status_names in
the VIDF [indexes and offsets start at 0]). There are two states defined for "HVPS3 State"
(states[1]=2) where the first table is used for lookup when the mode value is 0, and when the
mode value is 1, the second table is used for lookup. If a table had been defined depending on
the "Satellite Aspect" mode, there could potentially be 4 tables to switch between (states[0]=4).
The mode values (status bytes) are written to the Header File (mode_index[i_mode]) since these
are slowly varying parameters.

This VIDF also has pitch angle defined where the UARS/PEM detected B1, B2, and B3
values (pitch angle source) are used in the calculations. The three (3) defined constants are the
Axis A, Axis B, and Axis C components, respectively, of the aperture normals with respect to the
PEM magnetometer (VMAG). These constants along with the pitch angle source are necessary
for pitch angle computations.

t Upper Atmospheric Research Satellite /* mission */
t UARS /* spacecraft */
t Medium Energy Electron and Ion Measurements /* exp_desc */
t Nadir Pointing Electron Sensors /* inst_desc */
m 5 1 /* contact */
t Dr. J. David Winningham /* 00000 */
t Southwest Research Institute /* 00001 */
t 6220 Culebra Road /* 00002 */
t San Antonio, Texas 78238 /* 00003 */
t david@cluster.space.swri.edu /* 00004 */
s 35 /* num_comnts */
m 35 1 /* comments */
t The following is a list of tables which are in this vidf /* 00000 */
t TABLE 0: center energies (eV) /* 00001 */
t TABLE 1: telemetry decom table /* 00002 */
t TABLE 2: detector efficiencies /* 00003 */
t TABLE 3: geometry factors (cm**2-str) /* 00004 */
t TABLE 4: dE/E /* 00005 */
t TABLE 5: center energies (ergs) /* 00006 */

Fixed-Formatted VIDF Example 92 April 21, 2014

t TABLE 6: (center energies)**2 (ergs**2) /* 00007 */
t TABLE 7: constant needed in going to dist. fn /* 00008 */
t TABLE 8: Threshold count level /* 00009 */
t TABLE 9: Dark count level /* 00010 */
t TABLE 10: Amplifier Dead Time Factor /* 00011 */
t TABLE 11: ASCII descriptions of status states /* 00012 */
t /* 00013 */
t The following are units which can be derived from the tables. /* 00014 */
t The format is to give the tables applied followed by the /* 00015 */
t operations and unit definition /* 00016 */
t /* 00017 */
t DATA TYPE TABLES OPERS UNIT /* 00018 */
t Scan 0 0 eV /* 00019 */
t Sensor 1 0 cnts/accum /* 00020 */
t Sensor 1,2 0,4 cnts/accum (eff. cor) /* 00021 */
t Sensor 1,2 0,154 cnts/sec /* 00022 */
t Sensor 1,2,3,4 0,154,4,4 cnts/(cm**2-str-s) /* 00023 */
t Sensor 1,2,3,4,0 0,154,4,4,4 cnts/(cm**2-str-s-eV) /* 00024 */
t Sensor 1,2,3,4,0,5 0,154,4,4,4,3 ergs/(cm**2-str-s-eV) /* 00025 */
t Sensor 1,2,3,4,7,6 0,154,4,4,3,4 sec**3/km**6 /* 00026 */
t /* 00027 */
t The following is a list of constant values which are in this vidf /* 00028 */
t CONST 0: These are the Axis A components of each sensor's /* 00029 */
t aperture expressed relative to the PEM magnetometer. /* 00030 */
t CONST 1: These are the Axis B components of each sensor's /* 00031 */
t aperture expressed relative to the PEM magnetometer. /* 00032 */
t CONST 2: These are the Axis C components of each sensor's /* 00033 */
t aperture expressed relative to the PEM magnetometer. /* 00034 */
s 1980 /* ds_year */
s 1 /* ds_day */
l 0 /* ds_msec */
s 0 /* ds_usec */
s 2020 /* de_year */
s 1 /* de_day */
l 0 /* de_msec */
s 0 /* de_usec */
b 1 /* smp_id */
b 2 /* sen_mode */
b 4 /* n_qual */
b 2 /* cal_sets */
b 12 /* num_tbls */
b 3 /* num_consts */
b 2 /* status */
b 1 /* pa_defined */
s 3 /* sen */
s 31 /* swp_len */

Fixed-Formatted VIDF Example 93 April 21, 2014

s 48 /* max_nss */
l 3952 /* data_len */
b 0 /* fill_flg */
n /* fill value */
b 0 /* da_method */
m 2 1 /* status_name

s
*/

t Satellite Aspect /* 00000 */
t HVPS3 State /* 00001 */
m 2 2 /* states */
s 4 2 /* 00000-

00001
*/

m 3 1 /* sen_name */
t ESensor 10: 126.3 degrees /* 00000 */
t ESensor 12: 156.3 degrees /* 00001 */
t ESensor 14: -158.7 degrees /* 00002 */
m 2 1 /* cal_names */
t Fill Flags Per Energy Step /* 00000 */
t CRC Flags Per Energy Step /* 00001 */
m 4 1 /* qual_name */
t No Fill Data /* 00000 */
t Fill Data With Energy Sweep /* 00001 */
t Possible Fill Data With Energy Sweep /* 00002 */
t Fill And Possible Fill Data With Energy Sweep /* 00003 */
s 1 /* pa_format */
T UARS /* pa_project */
T UARS-1 /* pa_mission */
T PEM /* pa_exper */
T VMAG /* pa_inst */
T VMMA /* pa_vinst */
m 3 3 /* num_pa_sen */
s 0 1 2 /* b1-b2-b3 */
s 1 /* pa_apps */
m 1 1 /* num_pa_tbls */
s 1 /* pa_tbl_nums */
m 1 1 /* num_pa_ops */
s 0 /* pa_opers */
m 3 3 /* d_type */
b 0 0 0 /* 00000-

00002
*/

m 3 3 /* tdw_len */
b 8 8 8 /* 00000-

00002
*/

m 3 3 /* sen_status */
b 1 1 1 /* 00000-

00002
*/

Fixed-Formatted VIDF Example 94 April 21, 2014

m 3 3 /* time_off */
l 0 0 0 /* 00000-

00002
*/

m 2 2 /* cal_use */
s 8 8 /* 00000-

00001
*/

m 2 2 /* cal_wlen */
b 8 8 /* 00000-

00001
*/

m 2 2 /* cal_target */
b 1 1 /* 00000-

00001
*/

l -3 /* tbl_sca_sz */
l 93 /* tbl_ele_sz */
b 0 /* tbl_type */
s 1 /* num comnts */
m 1 1 /* tbl_desc */
t This table contains the center energies in eV /* 00000 */
b 2 /* tbl_var */
b 1 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 0 0 0 /* 00000-

00002
*/

m 3 3 /* tbl_off */
l 0 31 62 /* 00000-

00002
*/

m 3 3 /* tbl_sca */
b -3 -3 -3 /* 00000-

00002
*/

m 93 5 /* tbl */
l 28776058 20010449 13907228 9658524 6711579 /* 00000-

00004
*/

l 4664744 3232809 2252238 1560147 1087850 /* 00005-
00009

*/

l 758814 526591 367631 255315 177274 /* 00010-
00014

*/

l 120717 81964 59402 41316 28677 /* 00015-
00019

*/

l 19983 13920 9642 6730 4631 /* 00020-
00024

*/

l 3263 2276 1557 1072 674 /* 00025-
00029

*/

Fixed-Formatted VIDF Example 95 April 21, 2014

l 523 29629464 20603894 14319672 9944965 /* 00030-
00034

*/

l 6910623 4803084 3328684 2319031 1606416 /* 00035-
00039

*/

l 1120114 781317 542208 378535 262886 /* 00040-
00044

*/

l 182531 124296 84396 61165 42541 /* 00045-
00049

*/

l 29527 20576 14333 9928 6931 /* 00050-
00054

*/

l 4769 3361 2344 1603 1105 /* 00055-
00059

*/

l 694 538 29917599 20804259 14458925 /* 00060-
00064

*/

l 10041676 6977826 4849792 3361053 2341583 /* 00065-
00069

*/

l 1622038 1131005 788916 547481 382216 /* 00070-
00074

*/

l 265442 184307 125505 85217 61759 /* 00075-
00079

*/

l 42955 29815 20777 14472 10024 /* 00080-
00084

*/

l 6998 4815 3394 2367 1618 /* 00085-
00089

*/

l 1115 700 544 /* 00090-
00092

*/

l -3 /* tbl_sca_sz */
l 256 /* tbl_ele_sz */
b 0 /* tbl_type */
s 2 /* num comnts */
m 2 1 /* tbl_desc */
t This table contains the decompress from telemetry to /* 00000 */
t counts per accumulation period /* 00001 */
b 0 /* tbl_var */
b 1 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 0 0 0 /* 00000-

00002
*/

m 3 3 /* tbl_off */
l 0 0 0 /* 00000-

00002
*/

m 3 3 /* tbl_scale */

Fixed-Formatted VIDF Example 96 April 21, 2014

b -1 -1 -1 /* 00000-
00002

*/

m 256 5 /* tbl */
l 0 10 20 30 40 /* 00000-

00004
*/

l 50 60 70 80 90 /* 00005-
00009

*/

l 100 110 120 130 140 /* 00010-
00014

*/

l 150 165 175 185 195 /* 00015-
00019

*/

l 205 215 225 235 245 /* 00020-
00024

*/

l 255 265 275 285 295 /* 00025-
00029

*/

l 305 315 330 350 370 /* 00030-
00034

*/

l 390 410 430 450 470 /* 00035-
00039

*/

l 490 510 530 550 570 /* 00040-
00044

*/

l 590 610 630 660 700 /* 00045-
00049

*/

l 740 780 820 860 900 /* 00050-
00054

*/

l 940 980 1020 1060 1100 /* 00055-
00059

*/

l 1140 1180 1220 1260 1320 /* 00060-
00064

*/

l 1400 1480 1560 1640 1720 /* 00065-
00069

*/

l 1800 1880 1960 2040 2120 /* 00070-
00074

*/

l 2200 2280 2360 2440 2520 /* 00075-
00079

*/

l 2640 2800 2960 3120 3280 /* 00080-
00084

*/

l 3440 3600 3760 3920 4080 /* 00085-
00089

*/

l 4240 4400 4560 4720 4880 /* 00090-
00094

*/

l 5040 5280 5600 5920 6240 /* 00095-
00099

*/

l 6560 6880 7200 7520 7840 /* 00100-
00104

*/

l 8160 8480 8800 9120 9440 /* 00105- */

Fixed-Formatted VIDF Example 97 April 21, 2014

00109
l 9760 10080 10560 11200 11840 /* 00110-

00114
*/

l 12480 13120 13760 14400 15040 /* 00115-
00119

*/

l 15680 16320 16960 17600 18240 /* 00120-
00124

*/

l 18880 19520 20160 21120 22400 /* 00125-
00129

*/

l 23680 24960 26240 27520 28800 /* 00130-
00134

*/

l 30080 31360 32640 33920 35200 /* 00135-
00139

*/

l 36480 37760 39040 40320 42240 /* 00140-
00144

*/

l 44800 47360 49920 52480 55040 /* 00145-
00149

*/

l 57600 60160 62720 65280 67840 /* 00150-
00154

*/

l 70400 72960 75520 78080 80640 /* 00155-
00159

*/

l 84480 89600 94720 99840 104960 /* 00160-
00164

*/

l 110080 115200 120320 125440 130560 /* 00165-
00169

*/

l 135680 140800 145920 151040 156160 /* 00170-
00174

*/

l 161280 168960 179200 189440 199680 /* 00175-
00179

*/

l 209920 220160 230400 240640 250880 /* 00180-
00184

*/

l 261120 271360 281600 291840 302080 /* 00185-
00189

*/

l 312320 322560 337920 358400 378880 /* 00190-
00194

*/

l 399360 419840 440320 460800 481280 /* 00195-
00199

*/

l 501760 522240 542720 563200 583680 /* 00200-
00204

*/

l 604160 624640 645120 675840 716800 /* 00205-
00209

*/

l 757760 798720 839680 880640 921600 /* 00210-
00214

*/

l 962560 1003520 1044480 1085440 1126400 /* 00215-
00219

*/

l 1167360 1208320 1249280 1290240 1351680 /* 00220- */

Fixed-Formatted VIDF Example 98 April 21, 2014

00224
l 1433600 1515520 1597440 1679360 1761280 /* 00225-

00229
*/

l 1843200 1925120 2007040 2088960 2170880 /* 00230-
00234

*/

l 2252800 2334720 2416640 2498560 2580480 /* 00235-
00239

*/

l 2703360 2867200 3031040 3194880 3358720 /* 00240-
00244

*/

l 3522560 3686400 3850240 4014080 4177920 /* 00245-
00249

*/

l 4341760 4505600 4669440 4833280 4997120 /* 00250-
00254

*/

l 5160960 /* 00255 */
l -3 /* tbl_sca_sz */
l 186 /* tbl_ele_sz */
b 0 /* tbl_type */
s 4 /* num comnts */
m 4 1 /* tbl_desc */
t This table contains channeltron efficiency as a function /* 00000 */
t of energy step. The table is repeated for each of the /* 00001 */
t three detectors and then again since the efficiencies vary /* 00002 */
t depending on the applied bias voltage applied. /* 00003 */
b 2 /* tbl_var */
b 1 /* tbl_expand */
l 6 /* crit_act_sz */
m 3 3 /* crit_status */
b 1 1 1 /* 00000-

00002
*/

m 3 3 /* crit_off */
s 0 2 4 /* 00000-

00002
*/

m 6 5 /* crit_action */
l 0 93 31 124 62 /* 00000-

00004
*/

l 155 /* 00005 */
m 3 3 /* tbl_fmt */
b 0 0 0 /* 00000-

00002
*/

m 3 3 /* tbl_off */
l 0 0 0 /* 00000-

00002
*/

m 3 3 /* tbl_sca */
b -6 -6 -6 /* 00000-

00002
*/

m 186 5 /* tbl */

Fixed-Formatted VIDF Example 99 April 21, 2014

l 264919 340689 442820 531910 605260 /* 00000-
00004

*/

l 671389 730780 782180 827130 864849 /* 00005-
00009

*/

l 894100 917280 933659 944999 951960 /* 00010-
00014

*/

l 955820 957629 958090 958050 957740 /* 00015-
00019

*/

l 957360 957009 956709 956480 956300 /* 00020-
00024

*/

l 956179 956080 956019 955969 955929 /* 00025-
00029

*/

l 955910 263729 332670 435290 525690 /* 00030-
00034

*/

l 599629 666339 726310 778280 823819 /* 00035-
00039

*/

l 861419 891929 915690 932529 944270 /* 00040-
00044

*/

l 951529 955609 957560 958079 958069 /* 00045-
00049

*/

l 957769 957390 957040 956730 956499 /* 00050-
00054

*/

l 956309 956189 956089 956019 955969 /* 00055-
00059

*/

l 955929 955910 263619 330029 432819 /* 00060-
00064

*/

l 523620 597760 664659 724829 776989 /* 00065-
00069

*/

l 822709 860499 891200 915149 932150 /* 00070-
00074

*/

l 944019 951390 955540 957530 958069 /* 00075-
00079

*/

l 958069 957780 957400 957050 956740 /* 00080-
00084

*/

l 956499 956319 956189 956089 956019 /* 00085-
00089

*/

l 955969 955929 955919 520107 565243 /* 00090-
00094

*/

l 611256 657460 702879 746668 788259 /* 00095-
00099

*/

l 825896 859978 888868 912930 932294 /* 00100-
00104

*/

l 946394 956121 962158 965722 967494 /* 00105-
00109

*/

l 968152 968415 968423 968325 968203 /* 00110-
00114

*/

Fixed-Formatted VIDF Example 100 April 21, 2014

l 968086 967990 967913 967859 967818 /* 00115-
00119

*/

l 967788 967768 967750 967742 514510 /* 00120-
00124

*/

l 559463 605354 651510 696959 740858 /* 00125-
00129

*/

l 782639 820528 854918 884146 908569 /* 00130-
00134

*/

l 928354 942942 953207 959770 963828 /* 00135-
00139

*/

l 966024 966980 967521 967748 967823 /* 00140-
00144

*/

l 967827 967806 967779 967754 967733 /* 00145-
00149

*/

l 967718 967705 967696 967688 967685 /* 00150-
00154

*/

l 514685 559668 605598 651808 697324 /* 00155-
00159

*/

l 741312 783203 821220 855759 885142 /* 00160-
00164

*/

l 909718 929630 944285 954533 961004 /* 00165-
00169

*/

l 964914 966938 967751 968141 968240 /* 00170-
00174

*/

l 968209 968132 968047 967975 967916 /* 00175-
00179

*/

l 967872 967840 967814 967797 967782 /* 00180-
00184

*/

l 967778 /* 00185 */
l 3 /* tbl_sca_sz */
l 3 /* tbl_ele_sz */
b 0 /* tbl_type */
s 2 /* num comnts */
m 2 1 /* tbl_desc */
t This table contains the detector geometry factors as /* 00000 */
t (cm**2-s) /* 00001 */
b 2 /* tbl_var */
b 1 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 1 1 1 /* 00000-

00002
*/

m 3 3 /* tbl_off */

Fixed-Formatted VIDF Example 101 April 21, 2014

l 0 1 2 /* 00000-
00002

*/

m 3 3 /* tbl_sca */
b -8 -8 -8 /* 00000-

00002
*/

m 3 3 /* tbl */
l 20551 11009 18882 /* 00000-

00002
*/

l -3 /* tbl_sca_sz */
l 93 /* tbl_ele_sz */
b 0 /* tbl_type */
s 1 /* num comnts */
m 1 1 /* tbl_desc */
t This table contains the energy resolution (dE/E) /* 00000 */
b 2 /* tbl_var */
b 1 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 0 0 0 /* 00000-

00002
*/

m 3 3 /* tbl_off */
l 0 31 62 /* 00000-

00002
*/

m 3 3 /* tbl_sca */
b -3 -3 -3 /* 00000-

00002
*/

m 93 5 /* tbl */
l 344 344 344 344 344 /* 00000-

00004
*/

l 344 344 344 344 344 /* 00005-
00009

*/

l 344 344 344 344 344 /* 00010-
00014

*/

l 344 344 344 344 344 /* 00015-
00019

*/

l 344 344 344 344 344 /* 00020-
00024

*/

l 344 344 344 344 344 /* 00025-
00029

*/

l 344 355 355 355 355 /* 00030-
00034

*/

l 355 355 355 355 355 /* 00035-
00039

*/

Fixed-Formatted VIDF Example 102 April 21, 2014

l 355 355 355 355 355 /* 00040-
00044

*/

l 355 355 355 355 355 /* 00045-
00049

*/

l 355 355 355 355 355 /* 00050-
00054

*/

l 355 355 355 355 355 /* 00055-
00059

*/

l 355 355 349 349 349 /* 00060-
00064

*/

l 349 349 349 349 349 /* 00065-
00069

*/

l 349 349 349 349 349 /* 00070-
00074

*/

l 349 349 349 349 349 /* 00075-
00079

*/

l 349 349 349 349 349 /* 00080-
00084

*/

l 349 349 349 349 349 /* 00085-
00089

*/

l 349 349 349 /* 00090-
00092

*/

l -3 /* tbl_sca_sz */
l 93 /* tbl_ele_sz */
b 0 /* tbl_type */
s 1 /* num comnts */
m 1 1 /* tbl_desc */
t This table contains the center energies in ergs /* 00000 */
b 2 /* tbl_var */
b 1 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 0 0 0 /* 00000-

00002
*/

m 3 3 /* tbl_off */
l 0 31 62 /* 00000-

00002
*/

m 3 3 /* tbl_sca */
b -16 -16 -16 /* 00000-

00002
*/

m 93 5 /* tbl */
l 460992448 320567376 222793792 154729554 107519495 /* 00000-

00004
*/

Fixed-Formatted VIDF Example 103 April 21, 2014

l 74729198 51789600 36080852 24993554 17427356 /* 00005-
00009

*/

l 12156200 8435987 5889448 4090146 2839929 /* 00010-
00014

*/

l 1933886 1313063 951620 661882 459405 /* 00015-
00019

*/

l 320127 222998 154464 107814 74188 /* 00020-
00024

*/

l 52273 36461 24943 17173 10797 /* 00025-
00029

*/

l 8378 474664012 330074381 229401145 159318339 /* 00030-
00034

*/

l 110708180 76945405 53325517 37150876 25734784 /* 00035-
00039

*/

l 17944226 12516698 8686172 6064130 4211433 /* 00040-
00044

*/

l 2924146 1991221 1352023 979863 681506 /* 00045-
00049

*/

l 473022 329627 229614 159046 111034 /* 00050-
00054

*/

l 76399 53843 37550 25680 17702 /* 00055-
00059

*/

l 11117 8618 479279951 333284244 231631978 /* 00060-
00064

*/

l 160867649 111784772 77693667 53844068 37512159 /* 00065-
00069

*/

l 25985048 18118700 12638434 8770645 6123100 /* 00070-
00074

*/

l 4252380 2952598 2010590 1365176 989379 /* 00075-
00079

*/

l 688139 477636 332847 231841 160584 /* 00080-
00084

*/

l 112107 77136 54371 37919 25920 /* 00085-
00089

*/

l 17862 11213 8714 /* 00090-
00092

*/

l 93 /* tbl_sca_sz */
l 93 /* tbl_ele_sz */
b 0 /* tbl_type */
s 2 /* num comnts */
m 2 1 /* tbl_desc */
t This table contains the square of the center energies /* 00000 */
t in ergs**2 /* 00001 */
b 2 /* tbl_var */
b 1 /* tbl_expand */
l 0 /* crit_act_sz */

Fixed-Formatted VIDF Example 104 April 21, 2014

n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 0 0 0 /* 00000-

00002
*/

m 3 3 /* tbl_off */
l 0 31 62 /* 00000-

00002
*/

m 93 5 /* tbl_sca */
b -23 -23 -24 -24 -24 /* 00000-

00004
*/

b -25 -25 -25 -26 -26 /* 00005-
00009

*/

b -26 -27 -27 -27 -28 /* 00010-
00014

*/

b -28 -28 -29 -29 -29 /* 00015-
00019

*/

b -29 -30 -30 -30 -31 /* 00020-
00024

*/

b -31 -31 -32 -32 -32 /* 00025-
00029

*/

b -33 -23 -23 -24 -24 /* 00030-
00034

*/

b -24 -25 -25 -25 -26 /* 00035-
00039

*/

b -26 -26 -27 -27 -27 /* 00040-
00044

*/

b -28 -28 -28 -29 -29 /* 00045-
00049

*/

b -29 -29 -30 -30 -30 /* 00050-
00054

*/

b -31 -31 -31 -32 -32 /* 00055-
00059

*/

b -32 -33 -23 -23 -24 /* 00060-
00064

*/

b -24 -24 -25 -25 -25 /* 00065-
00069

*/

b -26 -26 -26 -27 -27 /* 00070-
00074

*/

b -27 -28 -28 -28 -29 /* 00075-
00079

*/

b -29 -29 -29 -30 -30 /* 00080-
00084

*/

b -30 -31 -31 -31 -32 /* 00085-
00089

*/

Fixed-Formatted VIDF Example 105 April 21, 2014

b -32 -32 -33 /* 00090-
00092

*/

m 93 5 /* tbl */
l 212514037 102763442 496370738 239412349 115604419 /* 00000-

00004
*/

l 558445315 268216268 130182793 624677787 303712771 /* 00005-
00009

*/

l 147773204 711658903 346856049 167292967 806519943 /* 00010-
00014

*/

l 373991636 172413517 905580698 438088204 211053449 /* 00015-
00019

*/

l 102481718 497282862 238593867 116239879 550395132 /* 00020-
00024

*/

l 273249370 132944243 622160231 294927040 116585574 /* 00025-
00029

*/

l 701985918 225305924 108949097 526248854 253823331 /* 00030-
00034

*/

l 122563011 592059544 284361082 138018763 662279122 /* 00035-
00039

*/

l 321995256 156667736 754495866 367736810 177361739 /* 00040-
00044

*/

l 855063343 396496472 182796867 960132084 464451544 /* 00045-
00049

*/

l 223750322 108654301 527228919 252958081 123286868 /* 00050-
00054

*/

l 583686525 289909233 141006858 659465480 313364343 /* 00055-
00059

*/

l 123607255 742830237 229709271 111078387 536533733 /* 00060-
00064

*/

l 258784006 124958353 603630600 289918376 140716211 /* 00065-
00069

*/

l 675222757 328287292 159730021 769242244 374923574 /* 00070-
00074

*/

l 180827427 871783575 404247254 186370643 978871159 /* 00075-
00079

*/

l 473535419 228136434 110787484 537504531 257873751 /* 00080-
00084

*/

l 125681946 595000876 295630132 143787634 671865060 /* 00085-
00089

*/

l 319061760 125753795 759491332 /* 00090-
00092

*/

l 1 /* tbl_sca_sz */
l 1 /* tbl_ele_sz */
b 0 /* tbl_type */
s 4 /* num comnts */
m 4 1 /* tbl_desc */

Fixed-Formatted VIDF Example 106 April 21, 2014

t This factor contains the mass dependency in computing /* 00000 */
t distribution (needed since we make computation using the /* 00001 */
t particle energy and not velocity) and also the necessary /* 00002 */
t scaling to put units in s**3/km***6 /* 00003 */
b 2 /* tbl_var */
b 1 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 1 1 1 /* 00000-

00002
*/

m 3 3 /* tbl_off */
l 0 0 0 /* 00000-

00002
*/

m 1 1 /* tbl_sca */
b -31 /* 00000 */
m 1 1 /* tbl */
l 4149605 /* 00000 */
l -3 /* tbl_sca_sz */
l 93 /* tbl_ele_sz */
b 2 /* tbl_type */
s 8 /* num_comnts */
m 8 1 /* tbl_desc */
t Table 8 /* 00000 */
t Calibration table of the threshold 1 count level. /* 00001 */
t In order to generate the threshold level, it is faked /* 00002 */
t in the IDFS world by signifying it dependent on a cal /* 00003 */
t field. Threshold count levels are not dependent on /* 00004 */
t cal values and represent a count of 1 (one) at each /* 00005 */
t sensor energy level. Zero value means that that energy /* 00006 */
t value has not been defined. /* 00007 */
b -1 /* tbl_var */
b 0 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 1 1 1 /* 00000-

00004
*/

m 3 3 /* tbl_off */
l 0 31 62 /* 00000-

00004
*/

m 3 3 /* tbl_sca */

Fixed-Formatted VIDF Example 107 April 21, 2014

b 0 0 0 /* 00000-
00004

*/

m 93 8 /* tbl */
l 1 1 1 1 1 1 1 1 /* 00000-

00007
*/

l 1 1 1 1 1 1 1 1 /* 00008-
00015

*/

l 1 1 1 1 1 1 1 1 /* 00016-
00023

*/

l 1 1 1 1 1 1 1 1 /* 00024-
00031

*/

l 1 1 1 1 1 1 1 1 /* 00032-
00039

*/

l 1 1 1 1 1 1 1 1 /* 00040-
00047

*/

l 1 1 1 1 1 1 1 1 /* 00048-
00055

*/

l 1 1 1 1 1 1 1 1 /* 00056-
00063

*/

l 1 1 1 1 1 1 1 1 /* 00064-
00071

*/

l 1 1 1 1 1 1 1 1 /* 00072-
00079

*/

l 1 1 1 1 1 1 1 1 /* 00080-
00087

*/

l 1 1 1 1 1 /* 00088-
00092

*/

l -3 /* tbl_sca_sz */
l 93 /* tbl_ele_sz */
b 2 /* tbl_type */
s 9 /* num_comnts */
m 9 1 /* tbl_desc */
t Table 9 /* 00000 */
t Dark count as determined by Gallileo Electro-Optics. /* 00001 */
t In order to generate the dark count level, it is faked /* 00002 */
t in the IDFS world by signifying it dependent on a cal /* 00003 */
t field. Dark count levels are not dependent on cal values /* 00004 */
t and represent a count at each sensor energy level. /* 00005 */
t Zero value means that that energy value has not been /* 00006 */
t defined. Dark counts represent the average counts that the /* 00007 */
t CEM sensor will generate by spontaneous emission. /* 00008 */
b -1 /* tbl_var */
b 0 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */

Fixed-Formatted VIDF Example 108 April 21, 2014

n /* crit_offs */
m 3 3 /* tbl_fmt */
b 1 1 1 /* 00000-

00004
*/

m 3 3 /* tbl_off */
l 0 31 62 /* 00000-

00004
*/

m 3 3 /* tbl_sca */
b -6 -6 -6 /* 00000-

00004
*/

m 93 8 /* tbl */
l 957 957 957 957 957 957 957 957 /* 00000-

00007
*/

l 957 957 957 957 957 957 957 957 /* 00008-
00015

*/

l 957 957 957 957 957 957 957 957 /* 00016-
00023

*/

l 957 957 957 957 957 957 957 957 /* 00024-
00031

*/

l 957 957 957 957 957 957 957 957 /* 00032-
00039

*/

l 957 957 957 957 957 957 957 957 /* 00040-
00047

*/

l 957 957 957 957 957 957 957 957 /* 00048-
00055

*/

l 957 957 957 957 957 957 11489 11489 /* 00056-
00063

*/

l 11489 11489 11489 11489 11489 11489 11489 11489 /* 00064-
00071

*/

l 11489 11489 11489 11489 11489 11489 11489 11489 /* 00072-
00079

*/

l 11489 11489 11489 11489 11489 11489 11489 11489 /* 00080-
00087

*/

l 11489 11489 11489 11489 11489 /* 00088-
00095

*/

l -3 /* tbl_sca_sz */
l 256 /* tbl_ele_sz */
b 0 /* tbl_type */
s 4 /* num_comnts */
m 4 1 /* tbl_desc */
t Table 10 /* 00000 */
t Amplifier Dead Time Correction Factor. Multiply this /* 00001 */
t number by count rate table value to correct the count for /* 00002 */
t amplifier dead time. /* 00003 */
b 0 /* tbl_var */
b 1 /* tbl_expand */

Fixed-Formatted VIDF Example 109 April 21, 2014

l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 3 3 /* tbl_fmt */
b 0 0 0 /* 00000-

00004
*/

m 3 3 /* tbl_off */
l 0 0 0 /* 00000-

00004
*/

m 3 3 /* tbl_sca */
b -6 -6 -6 /* 00000-

00004
*/

m 256 6 /* tbl */
l 1000000 1000004 1000009 1000013 1000017 1000022 /* 00000-

00005
*/

l 1000026 1000030 1000035 1000039 1000044 1000048 /* 00006-
00011

*/

l 1000052 1000057 1000061 1000065 1000072 1000076 /* 00012-
00017

*/

l 1000081 1000085 1000089 1000094 1000098 1000102 /* 00018-
00023

*/

l 1000107 1000111 1000115 1000120 1000124 1000128 /* 00024-
00029

*/

l 1000133 1000137 1000144 1000152 1000161 1000170 /* 00030-
00035

*/

l 1000178 1000187 1000196 1000205 1000213 1000222 /* 00036-
00041

*/

l 1000231 1000239 1000248 1000257 1000266 1000274 /* 00042-
00047

*/

l 1000287 1000305 1000322 1000340 1000357 1000374 /* 00048-
00053

*/

l 1000392 1000409 1000427 1000444 1000462 1000479 /* 00054-
00059

*/

l 1000496 1000514 1000531 1000549 1000575 1000610 /* 00060-
00065

*/

l 1000645 1000680 1000714 1000749 1000784 1000819 /* 00066-
00071

*/

l 1000854 1000889 1000924 1000959 1000994 1001029 /* 00072-
00077

*/

l 1001064 1001098 1001151 1001221 1001291 1001361 /* 00078-
00083

*/

l 1001430 1001500 1001570 1001640 1001710 1001780 /* 00084-
00089

*/

l 1001850 1001920 1001990 1002060 1002131 1002201 /* 00090-
00095

*/

Fixed-Formatted VIDF Example 110 April 21, 2014

l 1002306 1002446 1002586 1002727 1002867 1003008 /* 00096-
00101

*/

l 1003148 1003289 1003429 1003570 1003711 1003852 /* 00102-
00107

*/

l 1003993 1004134 1004275 1004416 1004628 1004910 /* 00108-
00113

*/

l 1005193 1005476 1005759 1006043 1006326 1006610 /* 00114-
00119

*/

l 1006895 1007179 1007464 1007749 1008034 1008319 /* 00120-
00125

*/

l 1008605 1008891 1009320 1009893 1010468 1011043 /* 00126-
00131

*/

l 1011619 1012196 1012775 1013354 1013934 1014515 /* 00132-
00137

*/

l 1015097 1015681 1016265 1016850 1017436 1018024 /* 00138-
00143

*/

l 1018907 1020087 1021272 1022461 1023655 1024852 /* 00144-
00149

*/

l 1026054 1027260 1028470 1029685 1030904 1032127 /* 00150-
00155

*/

l 1033355 1034587 1035824 1037065 1038935 1041445 /* 00156-
00161

*/

l 1043973 1046520 1049087 1051672 1054277 1056902 /* 00162-
00167

*/

l 1059547 1062212 1064898 1067605 1070333 1073082 /* 00168-
00163

*/

l 1075854 1078647 1082880 1088604 1094423 1100339 /* 00174-
00179

*/

l 1106356 1112476 1118703 1125041 1131492 1138061 /* 00180-
00185

*/

l 1144752 1151568 1158514 1165596 1172816 1180182 /* 00186-
00191

*/

l 1191513 1207180 1223533 1240630 1258534 1277321 /* 00192-
00197

*/

l 1297073 1317887 1339877 1363171 1387925 1414321 /* 00198-
00203

*/

l 1442580 1472970 1505823 1541557 1601779 1698837 /* 00204-
00209

*/

l 1826153 2013567 2431803 0 0 0 /* 00210-
00215

*/

l 0 0 0 0 0 0 /* 00216-
00221

*/

l 0 0 0 0 0 0 /* 00222-
00227

*/

l 0 0 0 0 0 0 /* 00228-
00233

*/

Fixed-Formatted VIDF Example 111 April 21, 2014

l 0 0 0 0 0 0 /* 00234-
00239

*/

l 0 0 0 0 0 0 /* 00240-
00245

*/

l 0 0 0 0 0 0 /* 00246-
00251

*/

l 0 0 0 0 /* 00252-
00255

*/

l 0 /* tbl_sca_sz */
l 6 /* tbl_ele_sz */
b 1 /* tbl_type */
s 1 /* num comnts */
m 1 1 /* tbl_desc */
t ASCII definitions of the status states /* 00000 */
b 4 /* tbl_var */
b 0 /* tbl_expand */
l 0 /* crit_act_sz */
n /* crit_status */
n /* crit_sen_off */
n /* crit_offs */
m 2 2 /* tbl_fmt */
b 0 0 /* 00000-

00002
*/

m 2 2 /* tbl_off */
l 0 4 /* 00000-

00002
*/

n /* tbl_sca */
m 6 4 /* tbl */
T "N along -X" "N along +X" "S along -X" "S along +X" /* 00000-

00003
*/

T "low" "high" /* 00004-
00005

*/

b 6 /* const_id */
s 3 /* num_comnts */
m 3 1 /* const_desc */
t Constant 0 /* 000000 */
t Axis A component of aperture normals with respect to the PEM /* 000001 */
t magnetometer (VMAG). /* 000002 */
m 3 3 /* const_sca */
b -6 -6 -6 /* 00000-

00002
*/

m 3 3 /* const */
l -22690 -17188 5581 /* 00000-

00002
*/

b 7 /* const_id */
s 3 /* num_comnts */

Fixed-Formatted VIDF Example 112 April 21, 2014

m 3 1 /* const_desc */
t Constant 1 /* 000000 */
t Axis B component of aperture normals with respect to the PEM /* 000001 */
t magnetometer (VMAG). /* 000002 */
m 3 3 /* const_sca */
b -6 -6 -6 /* 00000-

00002
*/

m 3 3 /* const */
l 804688 398922 -366949 /* 00000-

00002
*/

b 8 /* const_id */
s 3 /* num_comnts */
m 3 1 /* const_desc */
t Constant 2 /* 000000 */
t Axis C component of aperture normals with respect to the PEM /* 000001 */
t magnetometer (VMAG). /* 000002 */
m 3 3 /* const_sca */
b -6 -6 -6 /* 00000-

00002
*/

m 3 3 /* const */
l 593265 916824 930224 /* 00000-

00002
*/

Token-Tagged VIDF Example 113 April 21, 2014

8. TOKEN-TAGGED VIDF EXAMPLE

The example provided below is the same example that is provided in section 7 but defined in
the token-tagged VIDF format.

vidf MPSC {
 float version = 3.0;
 string mission = "Upper Atmospheric Research Satellite";
 string spacecraft = "UARS
 string experiment = "Medium Energy Electron and Ion Measurements";
 string instrument = "Nadir Pointing Electron Sensors";
 string contact = "Dr. J. David Winningham";
 string contact = "Southwest Research Institute";
 string contact = "6220 Culebra Road";
 string contact = "San Antonio, Texas 78238";
 string contact = "david@cluster.space.swri.edu";
/*
 * The following is a list of tables which are in this vidf
 * TABLE 0: center energies (eV)
 * TABLE 1: telemetry decom table
 * TABLE 2: detector efficiencies
 * TABLE 3: geometry factors (cm**2-str)
 * TABLE 4: dE/E
 * TABLE 5: center energies (ergs)
 * TABLE 6: (center energies)**2 (ergs**2)
 * TABLE 7: constant needed in going to dist. fn
 * TABLE 8: Threshold count level
 * TABLE 9: Dark count level
 * TABLE 10: Amplifier Dead Time Factor
 * TABLE 11: ASCII descriptions of status states
 *
 * The following are units which can be derived from the tables.
 * The format is to give the tables applied followed by the
 * operations and unit definition
 *
 * DATA TYPE TABLES OPERS UNIT
 * Scan 0 0 eV
 * Sensor 1 0 cnts/accum
 * Sensor 1,2 0,4 cnts/accum (eff. cor)
 * Sensor 1,2 0,154 cnts/sec
 * Sensor 1,2,3,4 0,154,4,4 cnts/(cm**2-str-s)
 * Sensor 1,2,3,4,0 0,154,4,4,4 cnts/(cm**2-str-s-eV)
 * Sensor 1,2,3,4,0,5 0,154,4,4,4,3 ergs/(cm**2-str-s-eV)
 * Sensor 1,2,3,4,7,6 0,154,4,4,3,4 sec**3/km**6
 *
 * The following is a list of constant values which are in this vidf
 * CONST 0: These are the Axis A components of each sensor's
 * aperture expressed relative to the PEM magnetometer.
 * CONST 1: These are the Axis B components of each sensor's
 * aperture expressed relative to the PEM magnetometer.
 * CONST 2: These are the Axis C components of each sensor's
 * aperture expressed relative to the PEM magnetometer.
 */
 int s_year = 1980; /* ds_year */
 int s_day = 1; /* ds_day */

Token-Tagged VIDF Example 114 April 21, 2014

 int s_msec = 0; /* ds_msec */
 int s_usec = 0; /* ds_usec */
 int e_year = 2020; /* de_year */
 int e_day = 1; /* de_day */
 int e_msec = 0; /* de_msec */
 int e_usec = 0; /* de_usec */
 int smp_id = 1; /* smp_id */
 int sen_mode = 2; /* sen_mode */
 int n_qual = 4; /* n_qual */
 int n_cal_sets = 2; /* cal_sets */
 int n_tbls = 12; /* num_tbls */
 int n_consts = 3; /* num_consts */
 int n_status = 2; /* status */
 int n_sensors = 3; /* sen */
 int swp_len = 31; /* swp_len */
 int max_nss = 48; /* max_nss */
 int data_len = 3952; /* data_len */
 int fill_flag = 0; /* fill_flg */
 int da_method = 0; /* da_method */
 struct Status0 {
 string name = "Satellite Aspect"; /* name */
 int state = 4; /* state */
 };
 struct Status1 {
 string name = "HVPS3 State"; /* name */
 int state = 2; /* state */
 };
 string qual_names = "No Fill Data"; /* name */
 string qual_names = "Fill Data With Energy Sweep"; /* name */
 string qual_names = "Possible Fill Data With Energy Sweep"; /* name */
 string qual_names = "Fill And Possible Fill Data With Energy Sweep";
 struct PitchAngle {
 int format = 1; /* pa_format */
 string project = "UARS"; /* pa_project */
 string mission = "UARS-1"; /* pa_mission */
 string experiment = "PEM"; /* pa_exper */
 string instrument = "VMAG"; /* pa_inst */
 string vinstrument = "VMMA"; /* pa_vinst */
 int b1 = 0; /* b1 */
 int b2 = 1; /* b2 */
 int b3 = 2; /* b3 */
 int num_tbls = 1; /* num_tbls */
 int tbls = 1; /* tbl 0 */
 int opers = 0; /* oper 0 */
 };
 struct Sensor0 {
 string name = "ESensor 10: 126.3 degrees"; /* name */
 int d_type = 0; /* d_type */
 int status = 1; /* status */
 int tdw_len = 8; /* tdw_len */
 int time_offset = 0; /* time_offset */
 };
 struct Sensor1 {
 string name = "ESensor 12: 156.3 degrees"; /* name */
 int d_type = 0; /* d_type */
 int status = 1; /* status */
 int tdw_len = 8; /* tdw_len */

Token-Tagged VIDF Example 115 April 21, 2014

 int time_offset = 0; /* time_offset */
 };
 struct Sensor2 {
 string name = "ESensor 14: -158.7 degrees"; /* name */
 int d_type = 0; /* d_type */
 int status = 1; /* status */
 int tdw_len = 8; /* tdw_len */
 int time_offset = 0; /* time_offset */
 };
 struct CalSet0 {
 string name = "Fill Flags Per Energy Step"; /* name */
 int use = 8; /* use */
 int word_len = 8; /* word length */
 int target = 1; /* target */
 };
 struct CalSet1 {
 string name = "CRC Flags Per Energy Step"; /* name */
 int use = 8; /* use */
 int word_len = 8; /* word length */
 int target = 1; /* target */
 };
 struct Table0 {
 int tbl_sca_sz = -3; /* tbl_sca_sz */
 int tbl_ele_sz = 93; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * This table contains the center energies in eV
 */
 int tbl_var = 2; /* tbl_var */
 int tbl_expand = 1; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {0, 0, 0}; /* format */
 int offset [3] = {0, 31, 62}; /* offsets */
 int scale [3] = {-3, -3, -3}; /* scale factor */
 int values [93] = { /* values */
 28776058, 20010449, 13907228, 9658524, 6711579, 4664744,
 3232809, 2252238, 1560147, 1087850, 758814, 526591,
 367631, 255315, 177274, 120717, 81964, 59402,
 41316, 28677, 19983, 13920, 9642, 6730,
 4631, 3263, 2276, 1557, 1072, 674,
 523, 29629464, 20603894, 14319672, 9944965, 6910623,
 4803084, 3328684, 2319031, 1606416, 1120114, 781317,
 542208, 378535, 262886, 182531, 124296, 84396,
 61165, 42541, 29527, 20576, 14333, 9928,
 6931, 4769, 3361, 2344, 1603, 1105,
 694, 538, 29917599, 20804259, 14458925, 10041676,
 6977826, 4849792, 3361053, 2341583, 1622038, 1131005,
 788916, 547481, 382216, 265442, 184307, 125505,
 85217, 61759, 42955, 29815, 20777, 14472,
 10024, 6998, 4815, 3394, 2367, 1618,
 1115, 700, 544
 };
 };
 struct Table1 {
 int tbl_sca_sz = -3; /* tbl_sca_sz */
 int tbl_ele_sz = 256; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */

Token-Tagged VIDF Example 116 April 21, 2014

/*
 * This table contains the decompress from telemetry to
 * counts per acumulation period
 */
 int tbl_var = 0; /* tbl_var */
 int tbl_expand = 1; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {0, 0, 0}; /* format */
 int offset [3] = {0, 0, 0}; /* offsets */
 int scale [3] = {-1, -1, -1}; /* scale factor */
 int values [256] = { /* values */
 0, 10, 20, 30, 40, 50, /* 000 - 005 */
 60, 70, 80, 90, 100, 110, /* 006 - 011 */
 120, 130, 140, 150, 165, 175, /* 012 - 017 */
 185, 195, 205, 215, 225, 235, /* 018 - 023 */
 245, 255, 265, 275, 285, 295, /* 024 - 029 */
 305, 315, 330, 350, 370, 390, /* 030 - 035 */
 410, 430, 450, 470, 490, 510, /* 036 - 041 */
 530, 550, 570, 590, 610, 630, /* 042 - 047 */
 660, 700, 740, 780, 820, 860, /* 048 - 053 */
 900, 940, 980, 1020, 1060, 1100, /* 054 - 059 */
 1140, 1180, 1220, 1260, 1320, 1400, /* 060 - 065 */
 1480, 1560, 1640, 1720, 1800, 1880, /* 066 - 071 */
 1960, 2040, 2120, 2200, 2280, 2360, /* 072 - 077 */
 2440, 2520, 2640, 2800, 2960, 3120, /* 078 - 083 */
 3280, 3440, 3600, 3760, 3920, 4080, /* 084 - 089 */
 4240, 4400, 4560, 4720, 4880, 5040, /* 090 - 095 */
 5280, 5600, 5920, 6240, 6560, 6880, /* 096 - 101 */
 7200, 7520, 7840, 8160, 8480, 8800, /* 102 - 107 */
 9120, 9440, 9760, 10080, 10560, 11200, /* 108 - 113 */
 11840, 12480, 13120, 13760, 14400, 15040, /* 114 - 119 */
 15680, 16320, 16960, 17600, 18240, 18880, /* 120 - 125 */
 19520, 20160, 21120, 22400, 23680, 24960, /* 126 - 131 */
 26240, 27520, 28800, 30080, 31360, 32640, /* 132 - 137 */
 33920, 35200, 36480, 37760, 39040, 40320, /* 138 - 143 */
 42240, 44800, 47360, 49920, 52480, 55040, /* 144 - 149 */
 57600, 60160, 62720, 65280, 67840, 70400, /* 150 - 155 */
 72960, 75520, 78080, 80640, 84480, 89600, /* 156 - 161 */
 94720, 99840, 104960, 110080, 115200, 120320, /* 162 - 167 */
 125440, 130560, 135680, 140800, 145920, 151040, /* 168 - 173 */
 156160, 161280, 168960, 179200, 189440, 199680, /* 174 - 179 */
 209920, 220160, 230400, 240640, 250880, 261120, /* 180 - 185 */
 271360, 281600, 291840, 302080, 312320, 322560, /* 186 - 191 */
 337920, 358400, 378880, 399360, 419840, 440320, /* 192 – 197 */
 460800, 481280, 501760, 522240, 542720, 563200, /* 198 – 203 */
 583680, 604160, 624640, 645120, 675840, 716800, /* 204 - 209 */
 757760, 798720, 839680, 880640, 921600, 962560, /* 210 - 215 */
 1003520, 1044480, 1085440, 1126400, 1167360, 1208320, /* 216-221 */
 1249280, 1290240, 1351680, 1433600, 1515520, 1597440, /* 222-227 */
 1679360, 1761280, 1843200, 1925120, 2007040, 2088960, /* 228-233 */
 2170880, 2252800, 2334720, 2416640, 2498560, 2580480, /* 234-239 */
 2703360, 2867200, 3031040, 3194880, 3358720, 3522560, /* 240-245 */
 3686400, 3850240, 4014080, 4177920, 4341760, 4505600, /* 246-251 */
 4669440, 4833280, 4997120, 5160960 /* 252-255 */
 };
 };

Token-Tagged VIDF Example 117 April 21, 2014

 struct Table2 {
 int tbl_sca_sz = -3; /* tbl_sca_sz */
 int tbl_ele_sz = 186; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * This table contains channeltron efficiency as a function
 * of energy step. The table is repeated for each of the
 * three detectors and then again since the efficiencies vary
 * depending on the applied bias voltage applied.
 */
 int tbl_var = 2; /* tbl_var */
 int tbl_expand = 1; /* tbl_expand */
 int crit_act_sz = 6; /* crit_act_ele */
 struct CriticalAction {
 int status [3] = {1, 1, 1}; /* status */
 int offset [3] = {0, 2, 4}; /* offset */
 int table [6] = { /* table */
 0, 93, 31, 124, 62, 155 /* 000 - 005 */
 };
 };
 int format [3] = {0, 0, 0}; /* format */
 int offset [3] = {0, 0, 0}; /* offsets */
 int scale [3] = {-6, -6, -6}; /* scale factor */
 int values [186] = { /* values */
 264919, 340689, 442820, 531910, 605260, 671389, /* 000 - 005 */
 730780, 782180, 827130, 864849, 894100, 917280, /* 006 - 011 */
 933659, 944999, 951960, 955820, 957629, 958090, /* 012 - 017 */
 958050, 957740, 957360, 957009, 956709, 956480, /* 018 - 023 */
 956300, 956179, 956080, 956019, 955969, 955929, /* 024 - 029 */
 955910, 263729, 332670, 435290, 525690, 599629, /* 030 - 035 */
 666339, 726310, 778280, 823819, 861419, 891929, /* 036 - 041 */
 915690, 932529, 944270, 951529, 955609, 957560, /* 042 - 047 */
 958079, 958069, 957769, 957390, 957040, 956730, /* 048 - 053 */
 956499, 956309, 956189, 956089, 956019, 955969, /* 054 - 059 */
 955929, 955910, 263619, 330029, 432819, 523620, /* 060 - 065 */
 597760, 664659, 724829, 776989, 822709, 860499, /* 066 - 071 */
 891200, 915149, 932150, 944019, 951390, 955540, /* 072 - 077 */
 957530, 958069, 958069, 957780, 957400, 957050, /* 078 - 083 */
 956740, 956499, 956319, 956189, 956089, 956019, /* 084 - 089 */
 955969, 955929, 955919, 520107, 565243, 611256, /* 090 - 095 */
 657460, 702879, 746668, 788259, 825896, 859978, /* 096 - 101 */
 888868, 912930, 932294, 946394, 956121, 962158, /* 102 - 107 */
 965722, 967494, 968152, 968415, 968423, 968325, /* 108 - 113 */
 968203, 968086, 967990, 967913, 967859, 967818, /* 114 - 119 */
 967788, 967768, 967750, 967742, 514510, 559463, /* 120 - 125 */
 605354, 651510, 696959, 740858, 782639, 820528, /* 126 - 131 */
 854918, 884146, 908569, 928354, 942942, 953207, /* 132 - 137 */
 959770, 963828, 966024, 966980, 967521, 967748, /* 138 - 143 */
 967823, 967827, 967806, 967779, 967754, 967733, /* 144 - 149 */
 967718, 967705, 967696, 967688, 967685, 514685, /* 150 - 155 */
 559668, 605598, 651808, 697324, 741312, 783203, /* 156 - 161 */
 821220, 855759, 885142, 909718, 929630, 944285, /* 162 - 167 */
 954533, 961004, 964914, 966938, 967751, 968141, /* 168 - 173 */
 968240, 968209, 968132, 968047, 967975, 967916, /* 174 - 179 */
 967872, 967840, 967814, 967797, 967782, 967778 /* 180 - 185 */
 };
 };

Token-Tagged VIDF Example 118 April 21, 2014

 struct Table3 {
 int tbl_sca_sz = 3; /* tbl_sca_sz */
 int tbl_ele_sz = 3; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * This table contains the detector geometry factors as
 * (cm**2-s) `
 */
 int tbl_var = 2; /* tbl_var */
 int tbl_expand = 1; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {1, 1, 1}; /* format */
 int offset [3] = {0, 1, 2}; /* offsets */
 int scale [3] = {-8, -8, -8}; /* scale factor */
 int values [3] = {20551, 11009, 18882}; /* values */
 };
 struct Table4 {
 int tbl_sca_sz = -3; /* tbl_sca_sz */
 int tbl_ele_sz = 93; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * This table contains the energy resolution (dE/E)
 */
 int tbl_var = 2; /* tbl_var */
 int tbl_expand = 1; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {0, 0, 0}; /* format */
 int offset [3] = {0, 31, 62}; /* offsets */
 int scale [3] = {-3, -3, -3}; /* scale factor */
 int values [93] = { /* values */
 344, 344, 344, 344, 344, 344, /* 000 - 005 */
 344, 344, 344, 344, 344, 344, /* 006 - 011 */
 344, 344, 344, 344, 344, 344, /* 012 - 017 */
 344, 344, 344, 344, 344, 344, /* 018 - 023 */
 344, 344, 344, 344, 344, 344, /* 024 - 029 */
 344, 355, 355, 355, 355, 355, /* 030 - 035 */
 355, 355, 355, 355, 355, 355, /* 036 - 041 */
 355, 355, 355, 355, 355, 355, /* 042 - 047 */
 355, 355, 355, 355, 355, 355, /* 048 - 053 */
 355, 355, 355, 355, 355, 355, /* 054 - 059 */
 355, 355, 349, 349, 349, 349, /* 060 - 065 */
 349, 349, 349, 349, 349, 349, /* 066 - 071 */
 349, 349, 349, 349, 349, 349, /* 072 - 077 */
 349, 349, 349, 349, 349, 349, /* 078 - 083 */
 349, 349, 349, 349, 349, 349, /* 084 - 089 */
 349, 349, 349 /* 090 - 092 */
 };
 };
 struct Table5 {
 int tbl_sca_sz = -3; /* tbl_sca_sz */
 int tbl_ele_sz = 93; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * This table contains the center energies in ergs
 */
 int tbl_var = 2; /* tbl_var */
 int tbl_expand = 1; /* tbl_expand */

Token-Tagged VIDF Example 119 April 21, 2014

 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {0, 0, 0}; /* format */
 int offset [3] = {0, 31, 62}; /* offsets */
 int scale [3] = {-16, -16, -16}; /* scale factor */
 int values [93] = { /* values */
 460992448, 320567376, 222793792, 154729554, 107519495, 74729198,
 51789600, 36080852, 24993554, 17427356, 12156200, 8435987,
 5889448, 4090146, 2839929, 1933886, 1313063, 951620,
 661882, 459405, 320127, 222998, 154464, 107814,
 74188, 52273, 36461, 24943, 17173, 10797,
 8378, 474664012, 330074381, 229401145, 159318339, 110708180,
 76945405, 53325517, 37150876, 25734784, 17944226, 12516698,
 8686172, 6064130, 4211433, 2924146, 1991221, 1352023,
 979863, 681506, 473022, 329627, 229614, 159046,
 111034, 76399, 53843, 37550, 25680, 17702,
 11117, 8618, 479279951, 333284244, 231631978, 160867649,
 111784772, 77693667, 53844068, 37512159, 25985048, 18118700,
 12638434, 8770645, 6123100, 4252380, 2952598, 2010590,
 1365176, 989379, 688139, 477636, 332847, 231841,
 160584, 112107, 77136, 54371, 37919, 25920,
 17862, 11213, 8714
 };
 };
 struct Table6 {
 int tbl_sca_sz = 93; /* tbl_sca_sz */
 int tbl_ele_sz = 93; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * This table contains the square of the center energies
 * in ergs**2
 */
 int tbl_var = 2; /* tbl_var */
 int tbl_expand = 1; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {0, 0, 0}; /* format */
 int offset [3] = {0, 31, 62}; /* offsets */
 int scale [93] = { /* scale factor */
 -23, -23, -24, -24, -24, -25, /* 000 - 005 */
 -25, -25, -26, -26, -26, -27, /* 006 - 011 */
 -27, -27, -28, -28, -28, -29, /* 012 - 017 */
 -29, -29, -29, -30, -30, -30, /* 018 - 023 */
 -31, -31, -31, -32, -32, -32, /* 024 - 029 */
 -33, -23, -23, -24, -24, -24, /* 030 - 035 */
 -25, -25, -25, -26, -26, -26, /* 036 - 041 */
 -27, -27, -27, -28, -28, -28, /* 042 - 047 */
 -29, -29, -29, -29, -30, -30, /* 048 - 053 */
 -30, -31, -31, -31, -32, -32, /* 054 - 059 */
 -32, -33, -23, -23, -24, -24, /* 060 - 065 */
 -24, -25, -25, -25, -26, -26, /* 066 - 071 */
 -26, -27, -27, -27, -28, -28, /* 072 - 077 */
 -28, -29, -29, -29, -29, -30, /* 078 - 083 */
 -30, -30, -31, -31, -31, -32, /* 084 - 089 */
 -32, -32, -33 /* 090 - 092 */
 };
 int values [93] = { /* values */
 212514037, 102763442, 496370738, 239412349, 115604419, 558445315,
 268216268, 130182793, 624677787, 303712771, 147773204, 711658903,

Token-Tagged VIDF Example 120 April 21, 2014

 346856049, 167292967, 806519943, 373991636, 172413517, 905580698,
 438088204, 211053449, 102481718, 497282862, 238593867, 116239879,
 550395132, 273249370, 132944243, 622160231, 294927040, 116585574,
 701985918, 225305924, 108949097, 526248854, 253823331, 122563011,
 592059544, 284361082, 138018763, 662279122, 321995256, 156667736,
 754495866, 367736810, 177361739, 855063343, 396496472, 182796867,
 960132084, 464451544, 223750322, 108654301, 527228919, 252958081,
 123286868, 583686525, 289909233, 141006858, 659465480, 313364343,
 123607255, 742830237, 229709271, 111078387, 536533733, 258784006,
 124958353, 603630600, 289918376, 140716211, 675222757, 328287292,
 159730021, 769242244, 374923574, 180827427, 871783575, 404247254,
 186370643, 978871159, 473535419, 228136434, 110787484, 537504531,
 257873751, 125681946, 595000876, 295630132, 143787634, 671865060,
 319061760, 125753795, 759491332
 };
 };
 struct Table7 {
 int tbl_sca_sz = 1; /* tbl_sca_sz */
 int tbl_ele_sz = 1; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * This factor contains the mass dependency in computing
 * distribution (needed since we make computation using the
 * particle energy and not velocity) and also the necessary
 * scaling to put units in s**3/km***6
 */
 int tbl_var = 2; /* tbl_var */
 int tbl_expand = 1; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {1, 1, 1}; /* format */
 int offset [3] = {0, 0, 0}; /* offsets */
 int scale [1] = {-31}; /* scale factor */
 int values [1] = {4149605}; /* values */
 };
 struct Table8 {
 int tbl_sca_sz = -3; /* tbl_sca_sz */
 int tbl_ele_sz = 93; /* tbl_ele_sz */
 int tbl_type = 2; /* tbl_type */
/*
 * Table 8
 * Calibration table of the threshold 1 count level.
 * In order to generate the threshold level, it is faked
 * in the IDF world by signifing it dependent on a cal
 * field. Threshold count levels are not dependent on
 * cal values and represent a count of 1 (one) at each
 * sensor energy level. Zero value means that that energy
 * value has not been defined.
 */
 int tbl_var = -1; /* tbl_var */
 int tbl_expand = 0; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {1, 1, 1}; /* format */
 int offset [3] = {0, 31, 62}; /* offsets */
 int scale [3] = {0, 0, 0}; /* scale factor */
 int values [93] = { /* values */
 1, 1, 1, 1, 1, 1, /* 000 - 005 */
 1, 1, 1, 1, 1, 1, /* 006 - 011 */

Token-Tagged VIDF Example 121 April 21, 2014

 1, 1, 1, 1, 1, 1, /* 012 - 017 */
 1, 1, 1, 1, 1, 1, /* 018 - 023 */
 1, 1, 1, 1, 1, 1, /* 024 - 029 */
 1, 1, 1, 1, 1, 1, /* 030 - 035 */
 1, 1, 1, 1, 1, 1, /* 036 - 041 */
 1, 1, 1, 1, 1, 1, /* 042 - 047 */
 1, 1, 1, 1, 1, 1, /* 048 - 053 */
 1, 1, 1, 1, 1, 1, /* 054 - 059 */
 1, 1, 1, 1, 1, 1, /* 060 - 065 */
 1, 1, 1, 1, 1, 1, /* 066 - 071 */
 1, 1, 1, 1, 1, 1, /* 072 - 077 */
 1, 1, 1, 1, 1, 1, /* 078 - 083 */
 1, 1, 1, 1, 1, 1, /* 084 - 089 */
 1, 1, 1 /* 090 - 092 */
 };
 };
 struct Table9 {
 int tbl_sca_sz = -3; /* tbl_sca_sz */
 int tbl_ele_sz = 93; /* tbl_ele_sz */
 int tbl_type = 2; /* tbl_type */
/*
 * Table 9
 * Dark count as determined by Gallileo Electro-Optics.
 * In order to generate the dark count level, it is faked
 * in the IDF world by signifing it dependent on a cal
 * field. Dark count levels are not dependent on cal values
 * and represent a count at each sensor energy level.
 * Zero value means that that energy value has not been
 * defined. Dark counts represent the average counts that the
 * CEM sensor will generate by spontaneous emission.
 */
 int tbl_var = -1; /* tbl_var */
 int tbl_expand = 0; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {1, 1, 1}; /* format */
 int offset [3] = {0, 31, 62}; /* offsets */
 int scale [3] = {-6, -6, -6}; /* scale factor */
 int values [93] = { /* values */
 957, 957, 957, 957, 957, 957, /* 000 - 005 */
 957, 957, 957, 957, 957, 957, /* 006 - 011 */
 957, 957, 957, 957, 957, 957, /* 012 - 017 */
 957, 957, 957, 957, 957, 957, /* 018 - 023 */
 957, 957, 957, 957, 957, 957, /* 024 - 029 */
 957, 957, 957, 957, 957, 957, /* 030 - 035 */
 957, 957, 957, 957, 957, 957, /* 036 - 041 */
 957, 957, 957, 957, 957, 957, /* 042 - 047 */
 957, 957, 957, 957, 957, 957, /* 048 - 053 */
 957, 957, 957, 957, 957, 957, /* 054 - 059 */
 957, 957, 11489, 11489, 11489, 11489, /* 060 - 065 */
 11489, 11489, 11489, 11489, 11489, 11489, /* 066 - 071 */
 11489, 11489, 11489, 11489, 11489, 11489, /* 072 - 077 */
 11489, 11489, 11489, 11489, 11489, 11489, /* 078 - 083 */
 11489, 11489, 11489, 11489, 11489, 11489, /* 084 - 089 */
 11489, 11489, 11489 /* 090 - 092 */
 };
 };

Token-Tagged VIDF Example 122 April 21, 2014

 struct Table10 {
 int tbl_sca_sz = -3; /* tbl_sca_sz */
 int tbl_ele_sz = 256; /* tbl_ele_sz */
 int tbl_type = 0; /* tbl_type */
/*
 * Table 10
 * Amplifier Dead Time Correction Factor. Multiply this
 * number by count rate table value to correct the count for
 * amplifier dead time.
 */
 int tbl_var = 0; /* tbl_var */
 int tbl_expand = 1; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [3] = {0, 0, 0}; /* format */
 int offset [3] = {0, 0, 0}; /* offsets */
 int scale [3] = {-6, -6, -6}; /* scale factor */
 int values [256] = { /* values */
 1000000, 1000004, 1000009, 1000013, 1000017, 1000022,
 1000026, 1000030, 1000035, 1000039, 1000044, 1000048,
 1000052, 1000057, 1000061, 1000065, 1000072, 1000076,
 1000081, 1000085, 1000089, 1000094, 1000098, 1000102,
 1000107, 1000111, 1000115, 1000120, 1000124, 1000128,
 1000133, 1000137, 1000144, 1000152, 1000161, 1000170,
 1000178, 1000187, 1000196, 1000205, 1000213, 1000222,
 1000231, 1000239, 1000248, 1000257, 1000266, 1000274,
 1000287, 1000305, 1000322, 1000340, 1000357, 1000374,
 1000392, 1000409, 1000427, 1000444, 1000462, 1000479,
 1000496, 1000514, 1000531, 1000549, 1000575, 1000610,
 1000645, 1000680, 1000714, 1000749, 1000784, 1000819,
 1000854, 1000889, 1000924, 1000959, 1000994, 1001029,
 1001064, 1001098, 1001151, 1001221, 1001291, 1001361,
 1001430, 1001500, 1001570, 1001640, 1001710, 1001780,
 1001850, 1001920, 1001990, 1002060, 1002131, 1002201,
 1002306, 1002446, 1002586, 1002727, 1002867, 1003008,
 1003148, 1003289, 1003429, 1003570, 1003711, 1003852,
 1003993, 1004134, 1004275, 1004416, 1004628, 1004910,
 1005193, 1005476, 1005759, 1006043, 1006326, 1006610,
 1006895, 1007179, 1007464, 1007749, 1008034, 1008319,
 1008605, 1008891, 1009320, 1009893, 1010468, 1011043,
 1011619, 1012196, 1012775, 1013354, 1013934, 1014515,
 1015097, 1015681, 1016265, 1016850, 1017436, 1018024,
 1018907, 1020087, 1021272, 1022461, 1023655, 1024852,
 1026054, 1027260, 1028470, 1029685, 1030904, 1032127,
 1033355, 1034587, 1035824, 1037065, 1038935, 1041445,
 1043973, 1046520, 1049087, 1051672, 1054277, 1056902,
 1059547, 1062212, 1064898, 1067605, 1070333, 1073082,
 1075854, 1078647, 1082880, 1088604, 1094423, 1100339,
 1106356, 1112476, 1118703, 1125041, 1131492, 1138061,
 1144752, 1151568, 1158514, 1165596, 1172816, 1180182,
 1191513, 1207180, 1223533, 1240630, 1258534, 1277321,
 1297073, 1317887, 1339877, 1363171, 1387925, 1414321,
 1442580, 1472970, 1505823, 1541557, 1601779, 1698837,
 1826153, 2013567, 2431803, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,

Token-Tagged VIDF Example 123 April 21, 2014

 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0
 };
 };
 struct Table11 {
 int tbl_sca_sz = 0; /* tbl_sca_sz */
 int tbl_ele_sz = 6; /* tbl_ele_sz */
 int tbl_type = 1; /* tbl_type */
/*
 * ASCII definitions of the status states
 */
 int tbl_var = 4; /* tbl_var */
 int tbl_expand = 0; /* tbl_expand */
 int crit_act_sz = 0; /* crit_act_ele */
 int format [2] = {0, 0}; /* format */
 int offset [2] = {0, 4}; /* offsets */
 string values [6] = { /* values */
 "N along -X", "N along +X", "S along -X", /* 000 – 002 */
 "S along +X", "low", "high" /* 003 - 005 */
 };
 };
 struct Constant0 {
 int id = 6; /* const_id */
/*
 * Constant 0
 * Axis A component of aperture normals with respect to the PEM
 * magnetometer (VMAG).
 */
 int scale [3] = {-6, -6, -6}; /* scale factor */
 int values [3] = {-22690, -17188, 5581}; /* values */
 };
 struct Constant1 {
 int id = 7; /* const_id */
/*
 * Constant 1
 * Axis B component of aperture normals with respect to the PEM
 * magnetometer (VMAG).
 */
 int scale [3] = {-6, -6, -6}; /* scale factor */
 int values [3] = {804688, 398922, -366949}; /* values */
 };
 struct Constant2 {
 int id = 8; /* const_id */
/*
 * Constant 2
 * Axis C component of aperture normals with respect to the PEM
 * magnetometer (VMAG).
 */
 int scale [3] = {-6, -6, -6}; /* scale factor */
 int values [3] = {593265, 916824, 930224}; /* values */
 };
}

Data File 124 April 21, 2014

9. HEADER FILE

The IDFS header file holds data which, for the most part, is slowly varying in time and
need not be repeated every data record. Each IDFS data record points to a header record which
contains its slowly varying information. Header records have variable length. Their format is
shown below in the form of a C data structure.

 struct
 {

short hdr_len; /*2-byte integer*/
short year; /*2-byte integer*/
short day; /*2-byte integer*/
char time_units; /*1-byte quantity*/
unsigned char i_mode; /* unsigned 1-byte quantity */
long data_accum; /* 4-byte integer */
long data_lat; /* 4-byte integer */
long swp_reset; /* 4-byte integer */
long sen_reset; /* 4-byte integer */
short n_sen; /* 2-byte integer */
unsigned short n_sample; /* unsigned 2-byte integer */
short scan_index[1 or n_sample]; /* array of 2-byte integers */
short sensor_index[n_sen]; /* array of 2-byte integers */
unsigned char d_qual[n_sen]; /* array of unsigned 1-byte quantities */
unsigned char mode_index[i_mode]; /* array of unsigned 1-byte quantities */

 };

Each of the fields within the header record is described in the following sections. Fields
are grouped together into logical blocks much the same as it is done for the VIDF field
descriptions.

9.1 HEADER RECORD SIZE

 Header records are not fixed in length. The length in bytes of each header record is found
in the first 2 bytes of the record. The software reads the first two bytes to determine how many
bytes to read to complete the access of the header record.

9.1.1 hdr_len
 This is a 2-byte integer which gives the size of the header record in bytes. The length
includes the 2 bytes holding the hdr_len variable.

9.2 HEADER RECORD TIME Information

Each header record contains the slowly varying time elements of when the data, which
points to it, was obtained. These are contained in the following two fields. The change of any
value necessitates the writing of a new header record.

Data File 125 April 21, 2014

9.2.1 year
This is a 2-byte integer that contains the year during which the data was obtained. This

value contains the 4-digit representation of the year (e.g., 1985) instead of the traditional 2-digit
representation (e.g., 85).

9.2.2 day

A 2-byte integer that contains the day of year during which the data was obtained. The
day of year begins at day 1 and runs to 365 for non-leap years and 366 for leap years.

9.3 HEADER INSTRUMENT TIMING Information

Each header record contains a set of times which describe the current accumulation times
of the virtual instrument. These times are found in several fields and are used to correctly time
tag the given data values found within the data records. These are contained in the following
five fields. The change of any value necessitates the writing of a new header record.

9.3.1 time_units

This field is a 1-byte quantity that together with the data_accum field describes the time
taken to acquire a single data measurement. This field contains the scaling given as a power of
ten, which is used to take the value in the data_accum field to units of seconds. An example is
shown in the data_accum section below. Since the finest resolution supported by the IDFS data
access software is down to the nanosecond, time_units CANNOT be less than -9.

9.3.2 data_accum

This field is a 4-byte integer that together with the time_units field describes the time
taken to acquire a single data measurement. This field contains an integer value which when
scaled according to the value given in the time_units field gives the time in seconds required to
acquire one data measurement. The conversion is given below.

ACC_TIME = data_accum ∗ 10time_units

Note that for many scalar data sets, the accumulation time is set to 0 to indicate that the
accumulation is instantaneous. In these cases, the data_lat field described below is used to give
the time between successive measurements.

9.3.3 data_lat

This is a 4-byte integer which contains the number of microseconds of dead time between
successive data acquisitions. This data field together with the data fields data_accum and
time_units gives the total time between successive accumulations in seconds. This is computed
as:

T = data_accum *10 time_units + data_lat * 10-6

Data File 126 April 21, 2014

9.3.4 swp_reset
This field is a 4-byte integer that holds the number of microseconds of dead time between

successive columns of data within the data matrix when time is advancing down the data
columns or between successive data rows when time is advancing across the rows (the timing
definition is described under the definition of sen_mode in the section describing the VIDF
fields). It is used primarily with virtual instruments which contain vector sensors, especially
those which require a finite dead time to reset themselves between successive sweeps. For many
particle instruments this is equivalent to the flyback time. Note that if all of the sweeps within a
sensor set are taken in parallel, the definition of this field and the sen_reset field described
below become identical. Only one of the values should be set.

9.3.5 sen_reset

This is a 4-byte integer field that holds the number of microseconds of dead time between
successive sensor sets of data. In many cases this field is redundant with the swp_reset field as
described above. When this is the case only one of the fields should be set.

9.4 HEADER STATUS (MODE) Information

The header records contain all status (mode) information which is associated with the
virtual instrument. Status information is commonly used to switch between sets of values in
VIDF tables which are used to convert telemetry to various sets of units. The status information
is held in two fields which are described below.

9.4.1 i_mode

This field is an unsigned 1-byte quantity that gives the number of status bytes contained
within this header. This value is the length of the mode_index field and its value is identical
with that given for the status field in the VIDF.

9.4.2 mode_index

This is a field of i_mode unsigned 1-byte elements, each of which contains the current
state of one of the virtual instrument's defined status bytes. If there is no status (i_mode = 0)
within the header record, this field is omitted from the header record.

9.5 HEADER SENSOR Information

The header records hold all of the sensor information for individual sensor sets. The
sensor information is contained in three fields which are described below.

9.5.1 n_sen

This is a 2-byte integer field that gives the number of sensors containing data in the
current sensor set. It also determines the number of columns within the sensor set matrix. The
number of sensors in the header record (n_sen) cannot be greater than the number of sensors
defined in the VIDF (see description of sen) for the virtual instrument.

Data File 127 April 21, 2014

9.5.2 sensor_index
This is a field of n_sen 2-byte integers which contains the sensor numbers in the order

that they are written to the data records. The values are offsets into the sen_name field in the
VIDF.

9.5.3 d_qual

This is a field of n_sen unsigned 1-byte quantities, where each holds the data quality flag
associated with its corresponding sensor as listed in the sensor_index field. The values are
offsets into the qual_name field in the VIDF.

9.6 HEADER SCAN Information

The header records hold all of the scan information for individual sensor sets. The scan
information is contained in two fields which are described below.

9.6.1 n_sample

This is an unsigned 2-byte integer field that holds the number of data samples which are
returned for each sensor within a sensor set of data. All sensors must return identical numbers of
samples. This field determines the number of rows within the sensor set matrix. For vector
sensors (smp_id = 1), n_sample is equivalent to the current scan length. For scalar sensors
(smp_id = 2), n_sample is simply the number of successive measurements which are stacked in
the sensor set.

9.6.2 scan_index

This is an array of 2-byte integers whose length is equivalent to the current scan length of
the sensor. For scalar sensors (smp_id = 2), this is always 1. For vector sensors, the length is
the value found in the header field n_sample. The values are offsets which are used to index
into any VIDF tables which are a function of scan. In general, the value for a scalar virtual
instrument has no meaning and must be set to zero.

Data File 128 April 21, 2014

10. DATA FILE

The data file is a series of fixed-length data records. Each data record consists of timing
information (dr_time), spin information (spin and sun_sen), references to header records
(hdr_off and nss) followed by the sensor and calibration data (data_array).

Data Record 1 Data Record 2 …

Data Info Data Array Data Info Data Array …
 Sen Set 1 Sen Set 2 … Sen Set N Sen Set 1 Sen Set 2 … Sen Set N …

Data storage in the IDFS data record is organized along the concept of sensor (primary)

data, calibration (secondary) data and sensor sets. Sensor data is the basic, primary measurement
identifier (object being studied). This data is placed in the data_array field first and can be
visualized as a 2-dimensional matrix that has n_sen columns and n_sample rows, where n_sen
and n_sample are obtained from the header record that is associated with the data being
processed. In actuality, the sensor data is simply written as a sequence of 1-dimensional arrays
that are n_sample in length, sensor by sensor. Calibration data is ancillary data which is
necessary to interpret the primary data (e.g., automatic gain correction values). Not all virtual
instruments have calibration data defined. Calibration data is placed in the data_array field
after all sensor data has been written. This data can also be visualized as a 2-dimensional matrix
that has n_sen columns and num_cal rows, where n_sen is obtained from the header record that
is associated with the data being processed and num_cal is computed using the cal_use field as
defined in the VIDF. These two data matrices, taken collectively, are what is referred to as an
IDFS sensor set.

Sensor Set 1 Sensor Set 2 …
Primary Matrix Secondary Matrix Primary Matrix Secondary Matrix …

Since each sensor set can be described by a different header record, it is possible to have

sensor set matrices that vary in size within the same data record. However, data records do not
vary in size, but are fixed length given in bytes by the data_len field in the VIDF. This allows
for rapid positioning in the data file.

Each record within the data file has the format shown below. The format is shown as the
C data structure used for writing and reading data records.

struct
{
 long dr_time; /* 4-byte integer */
 long spin; /* 4-byte integer */
 long sun_sen; /* 4-byte integer */
 long hdr_off[max_nss]; /* array of 4-byte integers */
 long nss; /* 4-byte integer */
 unsigned char data_array[data_size]; /* array of unsigned 1-byte quantities */
};

Data File 129 April 21, 2014

Note that the data field is generically assigned the data type of unsigned character (8 bits) even
though the data may be stored within the field with a base length of 8, 16, or 32 bits. The storage
boundary used for individual data within a particular data file is determined from the VIDF (see
tdw_len) and is used by the IDFS data access software to correctly unpack the data.

The following sections describe each of the fields within the data record structure.

10.1 DATA RECORD TIME Information

Each data record contains a single time field which is described below. It should be
noted that when the data time duration spans multiple days, it will be necessary to record the data
as multiple IDFS data records, where the duration of each IDFS record is no more than one day.
This approach is necessary because IDFS allows the definition of data having time tags with very
fine time resolution (i.e. accuracies to the nanoseconds resolution) rather than large time duration
data.

10.1.1 dr_time

This 4-byte integer field holds the relative beginning time of day in milliseconds for the
first data element of the first sensor set in the data record data field (data_array). From this
single value together with the sen_mode and time_off fields in the VIDF and the timing fields in
the header record, the absolute beginning acquisition time of any element within the data field
can be obtained. The absolute beginning time of day in milliseconds for the first data element of
the first sensor set in the data_array is found through the relationship:

TM = dr_time + time_off[sensor_index[0]]

where time_off is a field in the VIDF and sensor_index is a field in the IDFS header record.
Note that time of day for subsequent data elements also depends on the sen_mode setting in the
VIDF and the timing fields in the header record.

The absolute time of day value for the first data element of the first sensor set can be
adjusted to a nanosecond precision by storing the nanosecond time adjustment factor within the
first four bytes in data_array and by setting the VIDF field nano_defined to 1 (refer to section
5.2). Section 10.4 explains the layout of data_array. Note that the computation for data_size
in section 10.4 does not include the 4 bytes utilized by the nanosecond time adjustment factor.
The nanosecond time adjustment factor is interpreted as a signed, 4-byte quantity and therefore,
can reach a maximum of 2,147,483,647. However, since this value contains the resolution
between nanosecond and millisecond precision, the value should be no larger than 999,999 and
no less than 0. The IDFS data access software returns time tags in 2 parts, one which is
expressed in milliseconds of the day and one which contains the remaining nanoseconds of the
day.

10.2 DATA RECORD SPIN Information

Each data record contains two fields which enable the spin phase of the data to be
reconstructed. The descriptions of these fields are found below.

Data File 130 April 21, 2014

10.2.1 spin
This 4-byte integer field contains the azimuthal rate of rotation of the virtual instrument

in milliseconds per revolution. If the virtual instrument is non-spinning then this field is set to
zero. The spin rate can be either positive or negative. A positive rate of revolution is used when
the phase of the instrument increases during the time covered by the data record and a negative
rate of revolution is used when the phase of the instrument decreases during the time covered by
the data record.

10.2.2 sun_sen

This field is a 4-byte integer that contains the time in milliseconds of day at which a
predefined location crosses the azimuthal zero degree position. This location should be
described in the comment field of the VIDF file pertaining to the virtual instrument.

If the instrument is non-spinning (spin = 0), then this field, if greater than or equal to
zero, contains the azimuthal angular separation of the zero degree indicator from the zero degree
position. The separation is given as degrees times 100. If the sun_sen value is negative then
there is no angular information present in the data record. In the latter case, both this and the
spin fields can be ignored.

On a spinning virtual instrument (spin != 0), the angular offset from the azimuthal zero
degree position of any sensor J, at a time T, is found through the equation:

ANG = (T - sun_sen) / spin * 360 + ang_offset[J]

where ang_offset is the scaled angular offset value obtained from the VIDF (data if available is
contained in a VIDF constant field with a const_id value of 2 and if absent the value is set to 0),
and the sun_sen and spin are the fields described in this section.

10.3 DATA RECORD HEADER OFFSETS

Each data record has two fields which allow all sensor sets defined within the data record
to be connected with one of the header records in the header file. The descriptions of these fields
are found below.

10.3.1 nss

This is a 4-byte integer where the absolute value gives the number of sensor sets within
the IDFS data record. If nss is positive then there is one header offset element in the hdr_off
field per sensor set, and if nss is negative then only the first header offset element in the hdr_off
array applies for all of the sensor sets (# sensor sets = |nss|) within the data record.

10.3.2 hdr_off

This field is an array of max_nss 4-byte integer elements where max_nss is a field
defined in the VIDF file. Since the data records are fixed-size data records, this field must be
allocated to accommodate the maximum number of sensor sets that can be returned in a single
data record. The number of elements which are used in this array is given by the data field nss,

Data File 131 April 21, 2014

and each used element contains the byte offset into the IDFS header file for one of the data
record sensor sets. When nss is negative, only the first hdr_off element contains valid data and
all sensor sets utilize the same header record.

Negative hdr_off values are used to indicate end of file. This is handled by two separate
values which have different meanings depending on whether the acquired data is being obtained
under a real-time scenario or a post real-time (delayed time) scenario. The definitions are given
in the table below.

NEGATIVE HEADER OFFSET DEFINITIONS
HEADER OFFSET

VALUE
REAL-TIME
DEFINITION

POST REAL-TIME
DEFINITION

-1 End Of Transmission End Of File
-2 File Closed End Of File

In the real-time scenario, an end of transmission (-1) means that the data reception is concluded
(at least for the current time), the file is closed, and no further data files are being opened. A file
closed (-2) means that the current file is being closed with data still being acquired and a new
data file is being opened. A file closure may occur due to mode changes within the instrument,
restrictions on file length, need to free up disk space, etc.

A data file is closed by writing a separate end-of-file record. When processing data, a
partial record is sometimes generated at the end-of-file. This data must be written before the
end-of-file record by indicating the actual number of sensor sets in that partial record in the nss
field, placing the proper header offset values in the hdr_off array, and placing the proper sensor
values in the data_array. The remainder of the hdr_off array and data_array should be filled
with zero values. The final data record must be the end-of-file record which has the end-of-file
character in the first location of the header offset array, hdr_off[0] = -2, and nss = 1. The
remainder of the hdr_off array and the data_array are filled with zero values.

Under real-time operations, the end-of-file record is written to close out complete data
files, hdr_off[0] = -2 as described above. However during signal processing, the data stream can
be terminated indicating there is no more data to process. This case is indicated by writing a data
record with hdr_off[0] = -1 and nss = 1 to indicate there is no more data from the telemetry
stream.

10.4 DATA RECORD DATA ARRAY

All of the data contained within the data record is stored in a 1-dimensional array. The
format of this array is described below. Note that the computation for data_size does not
include the 4 bytes utilized by the nanosecond time adjustment factor (see section 10.1.1), if one
is defined. The nanosecond time adjustment factor is written only once at the beginning of the
data array since it applies to the first sensor set only (independent of the number of sensor sets
defined).

Data File 132 April 21, 2014

10.4.1 data_array
This is an array of data_size 1-byte quantities that contains all of the data which is stored

within the data record. The data is written as a series of sensor sets with each sensor set being a
2-dimensional matrix of primary sensor data followed by a 2-dimensional matrix of sensor
calibration (secondary) data.

Sensor Set 1 Sensor Set 2 …
Primary Matrix Secondary Matrix Primary Matrix Secondary Matrix …

Data for a given sensor are stored down a column in the data matrices. The header record
corresponding to a given sensor set identifies which sensor's data is stored in which column
through the sensor_index field. In the linear data array, matrices are written column by column
(or sensor by sensor).

Primary Matrix Secondary Matrix …
Sensor 1

Data
Sensor 2

Data
… Sensor N

Data
Sensor 1
Cal Sets

Sensor 2
Cal Sets

… Sensor N
Cal Sets

…

Also, the description for sen_mode in the VIDF section has examples of sensor sets which help
visualize a sensor set as a 2-dimensional array.

For a vector virtual instrument, the number of rows for the sensor (primary) data matrix is
equivalent to the number of sensor scan steps while for a scalar virtual instrument, the number of
matrix rows is the number of successive measurements stored within the sensor set. The number
of rows in the calibration (secondary) matrix is equivalent to the number of calibration elements
stored for each of the calibration sets defined in the VIDF. The number of elements can be
computed from the VIDF cal_use field. The calibration data is stored in the order in which they
are defined in the VIDF (cal set 0 data first followed by cal set 1 data, etc.) per sensor returned.

The IDFS data access software require data alignment in the data_array based upon the
word length of the sensor data AND the calibration data, if any is defined. That is, the VIDF
fields tdw_len and cal_wlen are examined by the IDFS read routines and the largest value of all
entries is used as the base size for all sensor and calibration values. For example, if you have
four sensors and their corresponding word lengths (tdw_len) are 2, 8, 2, and 8, respectively, then
sensors 0 and 2 are 2 bits, and sensors 1 and 3 are 8 bits. Thus, in storing the data into the
data_array, a base size of 8 bits MUST be used for all values. Therefore, 1 byte is written per
sensor data value. Each 2-bit value is placed in a separate 1-byte quantity. When the data is
actually extracted from the byte, the tdw_len value for the individual sensor is used, and
therefore, bits 0-1 are returned as the data value and bits 2-7 are ignored for sensors 0 and 2 in
the example.

Now, if there are sensors that are ALL less than or equal to 4 bits, multiple quantities can
be "packed" into a single byte. Bit lengths less than 8 bits are closest packed into an 8-bit word
(or byte). Data which is 1 bit in length is packed 8 per byte, data which is 2 bits is packed 4 per
byte, while 3 and 4 bits are packed 2 per byte. Any larger bit lengths are packed 1 per byte.

Data File 133 April 21, 2014

Bit values are packed starting at the least significant bit of the bit "chunk". For example,
if the maximum bit length is 3 (tdw_len = 3) and the IDFS has 1, 2, and 3-bit quantities, then the
3-bit quantities are placed in bits 0-2 and 4-6 (4-bit alignment) of a single byte, the 2-bit
quantities are placed in bits 0-1 and 4-5 (again 4-bit alignment), and the 1-bit quantities are
placed in bits 0 and 4 (4-bit alignment again). The bit alignments are powers of 2 -- 1, 2, 4, ...,
32 (see definition for tdw_len in the VIDF section).

In combining data quantities that are more than 8 bits in length, keep in mind that the
IDFS system works on 1, 2 and 4 byte alignments.

Given the information above, the data_size of the data_array is determined by the
following steps:

1. Determine the bit alignment, bit_align, by rounding the largest of the tdw_len AND
cal_wlen values defined in the VIDF to one of the above-mentioned bit alignment values
(must be power of 2). From bit_align, the number of quantities per byte is determined
as:

Vals_per_byte =
alignbit _
8

Note that valid Vals_per_byte values are 8 (all 1-bit quantities), 4 (no greater than 2-bit
quantities), 2 (4-bit quantities or less), 1 (8-bit quantities), 0.5 (16-bit or 2-byte
quantities), and 0.25 (32-bit or 4-byte quantities). Likewise, the number of bytes per
value is:

Bytes_per_val =
8

_ alignbit

Note that valid Bytes_per_val values are 0.125 (all 1-bit quantities), 0.25 (2-bit
quantities), 0.5 (4-bit quantities), 1 (8-bit quantities), 2, and 4.

2. Determine the number of sensor (primary) values in the sensor set by:

Num_Sen_Vals = n_sample * sen

where n_sample and sen are defined in the header record.

3. The total number of bytes in a primary sensor set is then:

Num_Sen_Bytes = Num_Sen_Vals * Bytes_per_val

OR

Num_Sen_Bytes =
byteperVals
ValsSenNum

__
__

Data File 134 April 21, 2014

where Num_Sen_Bytes is rounded UP to the nearest integer value. For example, if there
are 30 values (Num_Sen_Vals = 30) and the values are 2-bit quantities (Bytes_per_val =
0.25 and Vals_per_byte = 4), then Num_Sen_Bytes is computed to be 7.5 which should
be rounded up to give 8 bytes needed for one sensor set.

4. The number of bytes within the secondary or calibration data is computed in two steps.

First, the number of elements within each calibration set is determined. For a calibration
set J this is determined from one of the following three equations:

if (cal_use[J] == 0)

Num_Cal_Vals[J] = 1 * sen

if (n_sample % cal_use[J] == 0)

Num_Cal_Vals[J] =
cal_use[J]
n_sample * sen

if (n_sample % cal_use[J] != 0)

Num_Cal_Vals[J] = 







+1

cal_use[J]
n_sample * sen

where sen and n_sample are defined in the header record and cal_use is defined in the
VIDF file.

5. The total number of calibration elements within the sensor set is then given by:

Tot_Cal_Vals = ∑
−=

=

1cal_set

0

i

i
 Num_Cal_Vals[i]

where cal_sets is the number of calibration sets as defined in the VIDF.

6. The total number of bytes in a secondary (calibration) sensor set is then:

Num_Cal_Bytes = Tot_Cal_Vals * Bytes_per_val

OR

Num_Cal_Bytes =
byteperVals

ValsCalTot
__
__

where Num_Cal_Bytes is rounded UP to the nearest integer value as is done for
Num_Sen_Bytes as described above.

Data File 135 April 21, 2014

7. Finally, the number of bytes within a sensor set is:

Tot_SenSet_Bytes = Num_Sen_Bytes + Num_Cal_Bytes

AND thus, the data_size is computed by:

data_size = Tot_SenSet_Bytes * max_nss

where max_nss is the maximum number of sensor sets allowed in a data record as
defined in the VIDF.

 i

CONTENTS

1. Instrument Data File Set (IDFS) Overview .. 1
1.1 Virtual Instrument Concept .. 2
1.2 Network Order .. 2
1.3 IDFS Lineage ... 2
1.4 Measurement Classifications .. 3
1.5 Overview of IDFS Files ... 4

1.5.1 Data File ... 4
1.5.2 Header File ... 7
1.5.3 VIDF File ... 7

1.6 File Naming Conventions ... 8
1.7 IDFS Assumptions ... 8

2. Structure for Fixed-Formatted Virtual Instrument Description File (VIDF) 11
3. Structure for Token-Tagged Virtual Instrument Description File (VIDF)................................. 15
4. Fields Common to Fixed-Formatted and Token-Tagged VIDFs ... 17

4.1 LINEAGE ... 17
4.1.1 project ... 17
4.1.2 mission ... 17
4.1.3 experiment .. 17
4.1.4 v_inst .. 18
4.1.5 Example LINEAGE Entries ... 18

4.2 CONTACT Information ... 18
4.2.1 contact .. 18
4.2.2 Example CONTACT Information Entries ... 18

4.3 COMMENTS ... 19
4.3.1 num_comnts ... 19
4.3.2 comments ... 19
4.3.3 Example COMMENTS Entry .. 20

4.4 TIME Information .. 21
4.4.1 ds_year ... 22
4.4.2 ds_day ... 22
4.4.3 ds_msec .. 22
4.4.4 ds_usec ... 22
4.4.5 de_year ... 22
4.4.6 de_day .. 22
4.4.7 de_msec .. 22
4.4.8 de_usec ... 23
4.4.9 Example TIME Information Entry ... 23

4.5 SENSOR Information .. 23
4.5.1 smp_id .. 24
4.5.2 swp_len ... 24
4.5.3 sen ... 25
4.5.4 sen_name .. 25
4.5.5 d_type ... 25

4.5.5.1 IDFS Floating Point Formats ... 25

 ii

4.5.6 tdw_len ... 27
4.5.7 sen_status ... 27
4.5.8 Example SENSOR Information Entry ... 28

4.6 DATA TIMING Information ... 29
4.6.1 sen_mode .. 29
4.6.2 da_method .. 32
4.6.3 time_off .. 34
4.6.4 Example DATA TIMING Information Entry .. 34

4.7 QUALITY Definitions ... 35
4.7.1 n_qual ... 35
4.7.2 qual_name .. 36
4.7.3 Example QUALITY Definintions Entry .. 36

4.8 CALIBRATION SET Information ... 36
4.8.1 cal_sets ... 36
4.8.2 cal_names ... 36
4.8.3 cal_use .. 37

4.8.3.1 cal_use Example-1 ... 37
4.8.3.2 cal_use Example-2 ... 37

4.8.4 cal_wlen ... 37
4.8.5 cal_target .. 37
4.8.6 Example CALIBRATION SET Information Entries ... 38

4.9 INSTRUMENT STATUS (MODE) Information .. 40
4.9.1 status ... 40
4.9.2 status_name .. 40
4.9.3 states ... 40
4.9.4 Example INSTRUMENT STATUS (MODE) Information Entries 40

4.10 PITCH ANGLE Information .. 41
4.10.1 pa_defined .. 42
4.10.2 pa_format ... 42
4.10.3 pa_project ... 42
4.10.4 pa_mission .. 42
4.10.5 pa_exper ... 42
4.10.6 pa_inst .. 42
4.10.7 pa_vinst .. 43
4.10.8 pa_b1b2b3 .. 43
4.10.9 pa_apps ... 43
4.10.10 pa_tbls .. 43
4.10.11 pa_ops ... 43
4.10.12 Example PITCH ANGLE Information Entries .. 43

4.11 DATA RECORD Information ... 45
4.11.1 max_nss .. 45
4.11.2 data_len .. 46
4.11.3 Example DATA RECORD Information Entry .. 46

4.12 FILL Information ... 46
4.12.1 fill_flg ... 46
4.12.2 fill ... 46

 iii

4.12.3 Example FILL Information Entries .. 46
4.13 BLOCK Information .. 47

4.13.1 num_tbl ... 47
4.13.2 num_consts ... 47
4.13.3 Example BLOCK Information Entry ... 47

4.14 TABLE BLOCK .. 47
4.14.1 tbl_sca_sz ... 48
4.14.2 tbl_ele_sz .. 48
4.14.3 tbl_type ... 48
4.14.4 tbl_comnts .. 49
4.14.5 tbl_desc ... 49
4.14.6 tbl_var ... 49
4.14.7 tbl_expand .. 50
4.14.8 crit_act_sz ... 51
4.14.9 crit_status ... 51
4.14.10 crit_off .. 51
4.14.11 crit_action ... 51
4.14.12 tbl_fmt .. 51
4.14.13 tbl_off ... 52
4.14.14 tbl_sca ... 52
4.14.15 tbl .. 52
4.14.16 Example TABLE BLOCK Entries ... 53

4.15 CONSTANT BLOCK .. 56
4.15.1 const_id .. 57
4.15.2 const_comnts .. 59
4.15.3 const_desc .. 59
4.15.4 const_sca .. 59
4.15.5 const ... 59
4.15.6 Example CONSTANT BLOCK Entry ... 60

5. Fields Pertinent only to Token-Tagged VIDFs .. 61
5.1 AZIMUTHAL COMPUTATION Information .. 61

5.1.1 phi_method ... 61
5.1.2 Example phi_method Entry .. 61
5.1.3 spin_time_offset ... 62
5.1.4 Example spin_time_offset Entry .. 62

5.2 NANOSECOND TIME ADJUSTMENT Information .. 62
5.2.1 nano_defined .. 62
5.2.2 Example NANOSECOND TIME ADJUSTMENT Information Entry 63

5.3 HEADER RECORD TIME ADJUSTMENT Information .. 63
5.3.1 data_lat_units ... 63
5.3.2 Example data_lat_units Entry .. 63
5.3.3 swp_reset_units .. 63
5.3.4 Example swp_reset_units Entry ... 64
5.3.5 sen_reset_units ... 64
5.3.6 Example sen_reset_units Entry .. 64

5.4 TRANSFORMATION Information ... 64

 iv

5.4.1 orbiting_body ... 67
5.4.2 Example orbiting_body Entry .. 67
5.4.3 ref_sen_delay ... 67
5.4.4 ref_sen_delay_unit ... 67
5.4.5 Example ref_sen_delay and ref_sen_delay_unit Entries ... 68

5.5 COORDINATE SYSTEM TRANSFORMATION Information 69
5.5.1 BASIC COORDINATE SYSTEM Information .. 69

5.5.1.1 coord_system_defined .. 69
5.5.1.2 coord_system .. 69

5.5.2 EULER ANGLE ROTATION Information ... 70
5.5.2.1 pmi_defined .. 71
5.5.2.2 pmi_format ... 71
5.5.2.3 num_pmi_angles .. 71
5.5.2.4 pmi_project ... 71
5.5.2.5 pmi_mission ... 71
5.5.2.6 pmi_exper ... 71
5.5.2.7 pmi_inst .. 72
5.5.2.8 pmi_vinst .. 72
5.5.2.9 pmi_sensors .. 72
5.5.2.10 pmi_rotation_axis ... 72
5.5.2.11 pmi_apps .. 72
5.5.2.12 pmi_tbls .. 72
5.5.2.13 pmi_ops .. 72
5.5.2.14 Example EULER ANGLE ROTATION Information Entries 73

5.5.3 CELESTIAL POSITION Information ... 74
5.5.3.1 cp_defined .. 74
5.5.3.2 cp_format ... 74
5.5.3.3 cp_project ... 74
5.5.3.4 cp_mission .. 74
5.5.3.5 cp_exper ... 75
5.5.3.6 cp_inst .. 75
5.5.3.7 cp_vinst .. 75
5.5.3.8 cp_declination_sensor .. 75
5.5.3.9 cp_declination_apps ... 75
5.5.3.10 cp_declination_tbls ... 75
5.5.3.11 cp_declination_ops ... 75
5.5.3.12 cp_rt_ascension_sensor .. 76
5.5.3.13 cp_rt_ascension_apps ... 76
5.5.3.14 cp_rt_ascension_tbls .. 76
5.5.3.15 cp_rt_ascension_ops ... 76
5.5.3.16 Example CELESTIAL POSITION Information Entries 76

5.6 SPACECRAFT POTENTIAL Information ... 77
5.6.1 pot_src_defined .. 77
5.6.2 pot_src_format ... 78
5.6.3 pot_src_project ... 78
5.6.4 pot_src_mission .. 78

 v

5.6.5 pot_src_exper ... 78
5.6.6 pot_src_inst .. 78
5.6.7 pot_src_vinst .. 78
5.6.8 pot_src_sen ... 78
5.6.9 pot_src_apps ... 79
5.6.10 pot_src_tbls .. 79
5.6.11 pot_src_ops ... 79
5.6.12 pot_constant_val ... 79
5.6.13 Example SPACECRAFT POTENTIAL Information Entries 79

5.7 CALIBRATION SET Expansion Information ... 80
5.7.1 cal_scope .. 80
5.7.2 cal_d_type .. 81
5.7.3 Example CALIBRATION SET Expansion Information Entry 81

5.8 SCALAR PACKING Information ... 82
5.8.1 max_packing .. 82
5.8.2 Example SCALAR PACKING Information Entry .. 83

5.9 START OF SPIN Information ... 83
5.9.1 start_spin_defined .. 83
5.9.2 start_spin_project ... 84
5.9.3 start_spin_mission .. 84
5.9.4 start_spin_exper ... 84
5.9.5 start_spin_inst ... 84
5.9.6 start_spin_vinst ... 84
5.9.7 start_spin_sensor .. 84
5.9.8 start_spin_msec_adj ... 84
5.9.9 start_spin_nsec_adj .. 84
5.9.10 Example START OF SPIN Information Entries .. 85

5.10 BACKGROUND Information ... 85
5.10.1 bkgd_defined .. 85
5.10.2 bkgd_format ... 85
5.10.3 bkgd_project ... 86
5.10.4 bkgd_mission ... 86
5.10.5 bkgd_exper ... 86
5.10.6 bkgd_inst .. 86
5.10.7 bkgd_vinst .. 86
5.10.8 bkgd_sensors .. 86
5.10.9 bkgd_apps ... 86
5.10.10 bkgd_tbls .. 87
5.10.11 bkgd_ops .. 87
5.10.12 Example BACKGROUND Information Entries .. 87

6. Multiple VIDF files for a Given Instrument .. 89
7. FIXED-FORMATTED VIDF EXAMPLE .. 91
8. TOKEN-TAGGED VIDF EXAMPLE .. 113
9. HEADER FILE .. 124

9.1 HEADER RECORD SIZE ... 124
9.1.1 hdr_len .. 124

 vi

9.2 HEADER RECORD TIME Information .. 124
9.2.1 year ... 125
9.2.2 day .. 125

9.3 HEADER INSTRUMENT TIMING Information ... 125
9.3.1 time_units ... 125
9.3.2 data_accum ... 125
9.3.3 data_lat ... 125
9.3.4 swp_reset .. 126
9.3.5 sen_reset ... 126

9.4 HEADER STATUS (MODE) Information .. 126
9.4.1 i_mode .. 126
9.4.2 mode_index .. 126

9.5 HEADER SENSOR Information ... 126
9.5.1 n_sen ... 126
9.5.2 sensor_index ... 127
9.5.3 d_qual ... 127

9.6 HEADER SCAN Information .. 127
9.6.1 n_sample ... 127
9.6.2 scan_index .. 127

10. DATA FILE ... 128
10.1 DATA RECORD TIME Information ... 129

10.1.1 dr_time ... 129
10.2 DATA RECORD SPIN Information .. 129

10.2.1 spin ... 130
10.2.2 sun_sen ... 130

10.3 DATA RECORD HEADER OFFSETS ... 130
10.3.1 nss ... 130
10.3.2 hdr_off .. 130

10.4 DATA RECORD DATA ARRAY .. 131
10.4.1 data_array ... 132

 i

LIST OF FIGURES

Figure 1. IDFS Sensor Set ... 6
Figure 2. IDFS Axes Definition ... 9
Figure 3. Cluster Axes Definitions .. 9
Figure 4. Rotation about +1 axis .. 65
Figure 5. Rotation about +2 axis .. 65
Figure 6. Rotation about +3 axis .. 66
Figure 7. Euler Angle definitions for the Cluster Mission ... 70

	1. Instrument Data File Set (IDFS) Overview
	1.1 Virtual Instrument Concept
	1.2 Network Order
	1.3 IDFS Lineage
	1.4 Measurement Classifications
	1.5 Overview of IDFS Files
	1.5.1 Data File
	1.5.2 Header File
	1.5.3 VIDF File

	1.6 File Naming Conventions
	1.7 IDFS Assumptions

	2. Structure for Fixed-Formatted Virtual Instrument Description File (VIDF)
	3. Structure for Token-Tagged Virtual Instrument Description File (VIDF)
	4. Fields Common to Fixed-Formatted and Token-Tagged VIDFs
	4.1 LINEAGE
	4.1.1 project
	4.1.2 mission
	4.1.3 experiment
	4.1.4 v_inst
	4.1.5 Example LINEAGE Entries

	4.2 CONTACT Information
	4.2.1 contact
	4.2.2 Example CONTACT Information Entries

	4.3 COMMENTS
	4.3.1 num_comnts
	4.3.2 comments
	4.3.3 Example COMMENTS Entry

	4.4 TIME Information
	4.4.1 ds_year
	4.4.2 ds_day
	4.4.3 ds_msec
	4.4.4 ds_usec
	4.4.5 de_year
	4.4.6 de_day
	4.4.7 de_msec
	4.4.8 de_usec
	4.4.9 Example TIME Information Entry

	4.5 SENSOR Information
	4.5.1 smp_id
	4.5.2 swp_len
	4.5.3 sen
	4.5.4 sen_name
	4.5.5 d_type
	4.5.5.1 IDFS Floating Point Formats

	4.5.6 tdw_len
	4.5.7 sen_status
	4.5.8 Example SENSOR Information Entry

	4.6 DATA TIMING Information
	4.6.1 sen_mode
	4.6.2 da_method
	4.6.3 time_off
	4.6.4 Example DATA TIMING Information Entry

	4.7 QUALITY Definitions
	4.7.1 n_qual
	4.7.2 qual_name
	4.7.3 Example QUALITY Definintions Entry

	4.8 CALIBRATION SET Information
	4.8.1 cal_sets
	4.8.2 cal_names
	4.8.3 cal_use
	4.8.3.1 cal_use Example-1
	4.8.3.2 cal_use Example-2

	4.8.4 cal_wlen
	4.8.5 cal_target
	4.8.6 Example CALIBRATION SET Information Entries

	4.9 INSTRUMENT STATUS (MODE) Information
	4.9.1 status
	4.9.2 status_name
	4.9.3 states
	4.9.4 Example Instrument STATUS (MODE) Information Entries

	4.10 PITCH ANGLE Information
	4.10.1 pa_defined
	4.10.2 pa_format
	4.10.3 pa_project
	4.10.4 pa_mission
	4.10.5 pa_exper
	4.10.6 pa_inst
	4.10.7 pa_vinst
	4.10.8 pa_b1b2b3
	4.10.9 pa_apps
	4.10.10 pa_tbls
	4.10.11 pa_ops
	4.10.12 Example PITCH ANGLE Information Entries

	4.11 DATA RECORD Information
	4.11.1 max_nss
	4.11.2 data_len
	4.11.3 Example DATA RECORD Information Entry

	4.12 FILL Information
	4.12.1 fill_flg
	4.12.2 fill
	4.12.3 Example FILL Information Entries

	4.13 BLOCK Information
	4.13.1 num_tbl
	4.13.2 num_consts
	4.13.3 Example BLOCK Information Entry

	4.14 TABLE BLOCK
	4.14.1 tbl_sca_sz
	4.14.2 tbl_ele_sz
	4.14.3 tbl_type
	4.14.4 tbl_comnts
	4.14.5 tbl_desc
	4.14.6 tbl_var
	4.14.7 tbl_expand
	4.14.8 crit_act_sz
	4.14.9 crit_status
	4.14.10 crit_off
	4.14.11 crit_action
	4.14.12 tbl_fmt
	4.14.13 tbl_off
	4.14.14 tbl_sca
	4.14.15 tbl
	4.14.16 Example TABLE BLOCK Entries

	4.15 CONSTANT BLOCK
	4.15.1 const_id
	4.15.2 const_comnts
	4.15.3 const_desc
	4.15.4 const_sca
	4.15.5 const
	4.15.6 Example CONSTANT BLOCK Entry

	5. Fields Pertinent only to Token-Tagged VIDFs
	5.1 AZIMUTHAL COMPUTATION Information
	5.1.1 phi_method
	5.1.2 Example phi_method Entry
	5.1.3 spin_time_offset
	5.1.4 Example spin_time_offset Entry

	5.2 NANOSECOND TIME ADJUSTMENT Information
	5.2.1 nano_defined
	5.2.2 Example NANOSECOND TIME ADJUSTMENT Information Entry

	5.3 HEADER RECORD TIME ADJUSTMENT Information
	5.3.1 data_lat_units
	5.3.2 Example data_lat_units Entry
	5.3.3 swp_reset_units
	5.3.4 Example swp_reset_units Entry
	5.3.5 sen_reset_units
	5.3.6 Example sen_reset_units Entry

	5.4 TRANSFORMATION Information
	5.4.1 orbiting_body
	5.4.2 Example orbiting_body Entry
	5.4.3 ref_sen_delay
	5.4.4 ref_sen_delay_unit
	5.4.5 Example ref_sen_delay and ref_sen_delay_unit Entries

	5.5 COORDINATE SYSTEM TRANSFORMATION Information
	5.5.1 BASIC COORDINATE SYSTEM Information
	5.5.1.1 coord_system_defined
	5.5.1.2 coord_system

	5.5.2 EULER ANGLE ROTATION Information
	5.5.2.1 pmi_defined
	5.5.2.2 pmi_format
	5.5.2.3 num_pmi_angles
	5.5.2.4 pmi_project
	5.5.2.5 pmi_mission
	5.5.2.6 pmi_exper
	5.5.2.7 pmi_inst
	5.5.2.8 pmi_vinst
	5.5.2.9 pmi_sensors
	5.5.2.10 pmi_rotation_axis
	5.5.2.11 pmi_apps
	5.5.2.12 pmi_tbls
	5.5.2.13 pmi_ops
	5.5.2.14 Example EULER ANGLE ROTATION Information Entries

	5.5.3 CELESTIAL POSITION Information
	5.5.3.1 cp_defined
	5.5.3.2 cp_format
	5.5.3.3 cp_project
	5.5.3.4 cp_mission
	5.5.3.5 cp_exper
	5.5.3.6 cp_inst
	5.5.3.7 cp_vinst
	5.5.3.8 cp_declination_sensor
	5.5.3.9 cp_declination_apps
	5.5.3.10 cp_declination_tbls
	5.5.3.11 cp_declination_ops
	5.5.3.12 cp_rt_ascension_sensor
	5.5.3.13 cp_rt_ascension_apps
	5.5.3.14 cp_rt_ascension_tbls
	5.5.3.15 cp_rt_ascension_ops
	5.5.3.16 Example Celestial Position Information Entries

	5.6 Spacecraft Potential Information
	5.6.1 pot_src_defined
	5.6.2 pot_src_format
	5.6.3 pot_src_project
	5.6.4 pot_src_mission
	5.6.5 pot_src_exper
	5.6.6 pot_src_inst
	5.6.7 pot_src_vinst
	5.6.8 pot_src_sen
	5.6.9 pot_src_apps
	5.6.10 pot_src_tbls
	5.6.11 pot_src_ops
	5.6.12 pot_constant_val
	5.6.13 Example Spacecraft Potential Information Entries

	5.7 CALIBRATION SET Expansion Information
	5.7.1 cal_scope
	5.7.2 cal_d_type
	5.7.3 Example CALIBRATION SET Expansion Information Entry

	5.8 Scalar Packing Information
	5.8.1 max_packing
	5.8.2 Example SCALAR PACKING Information Entry

	5.9 Start of Spin Information
	5.9.1 start_spin_defined
	5.9.2 start_spin_project
	5.9.3 start_spin_mission
	5.9.4 start_spin_exper
	5.9.5 start_spin_inst
	5.9.6 start_spin_vinst
	5.9.7 start_spin_sensor
	5.9.8 start_spin_msec_adj
	5.9.9 start_spin_nsec_adj
	5.9.10 Example START OF SPIN Information Entries

	5.10 BACKGROUND Information
	5.10.1 bkgd_defined
	5.10.2 bkgd_format
	5.10.3 bkgd_project
	5.10.4 bkgd_mission
	5.10.5 bkgd_exper
	5.10.6 bkgd_inst
	5.10.7 bkgd_vinst
	5.10.8 bkgd_sensors
	5.10.9 bkgd_apps
	5.10.10 bkgd_tbls
	5.10.11 bkgd_ops
	5.10.12 Example BACKGROUND Information Entries

	6. Multiple VIDF files for a Given Instrument
	7. FIXED-FORMATTED VIDF EXAMPLE
	8. TOKEN-TAGGED VIDF EXAMPLE
	9. HEADER FILE
	9.1 HEADER RECORD SIZE
	9.1.1 hdr_len

	9.2 HEADER RECORD TIME Information
	9.2.1 year
	9.2.2 day

	9.3 HEADER INSTRUMENT TIMING Information
	9.3.1 time_units
	9.3.2 data_accum
	9.3.3 data_lat
	9.3.4 swp_reset
	9.3.5 sen_reset

	9.4 HEADER STATUS (MODE) Information
	9.4.1 i_mode
	9.4.2 mode_index

	9.5 HEADER SENSOR Information
	9.5.1 n_sen
	9.5.2 sensor_index
	9.5.3 d_qual

	9.6 HEADER SCAN Information
	9.6.1 n_sample
	9.6.2 scan_index

	10. DATA FILE
	10.1 DATA RECORD TIME Information
	10.1.1 dr_time

	10.2 DATA RECORD SPIN Information
	10.2.1 spin
	10.2.2 sun_sen

	10.3 DATA RECORD HEADER OFFSETS
	10.3.1 nss
	10.3.2 hdr_off

	10.4 DATA RECORD DATA ARRAY
	10.4.1 data_array

